ÌâÄ¿ÄÚÈÝ
15£®¢ÙÈô½«»îÈû¹Ì¶¨£¬È»ºó½«¸×ÄÚÆøÌ建Âý¼ÓÈȵ½T1=360K£¬Çó´Ëʱ¸×ÄÚÆøÌåµÄѹǿ£®
¢ÚÈô»îÈû¿ÉÒÔ×ÔÓÉÒÆ¶¯£¬¸Ä±ä¸×ÄÚÆøÌåζȣ¬·¢ÏÖ»îÈûÏòÓÒ»ºÂýÒÆ¶¯ÁË¡÷L=2cm£¬»îÈûÒÆ¶¯¹ý³ÌÖв»»á¾¹ýС¿×£¬ÔòÆøÌåζÈΪ¶àÉÙ£¿
·ÖÎö £¨1£©ÈôÓö¤×Ó½«»îÈû¹Ì¶¨£¬È»ºó½«¸×ÄÚÆøÌ建Âý¼ÓÈȵ½T1£¬´Ëʱ¸×ÄÚÆøÌå×öµÈÈݱ仯£¬ÓɲéÀí¶¨Âɼ´¿ÉÇó³öĩ״̬µÄѹǿ£®
£¨2£©ÈôÆøÌåζÈÈÔΪT0£¬°Îµô¶¤×Ó£¬È»ºó¸Ä±ä¸×ÄÚÆøÌåζȣ¬ÓÉÓÚ»îÈûÊÜÁ¦´óС²»±ä£¬ËùÒÔÆøÌåµÄѹǿ²»±ä£¬ÓɸǕÂÀÈø¿Ë¶¨Âɼ´¿ÉÇó³öĩ״̬µÄζȣ®
½â´ð ½â£º£¨1£©A¡¢BÆøÌåÏàͨ£¬³õ״̬ѹǿΪP0£¬ÓÉÓÚ¶¤×Ó½«»îÈû¹Ì¶¨£¬ÆøÌåÌå»ý²»±ä
ÓɲéÀí¶¨ÂÉ¿ÉÖª£º$\frac{{P}_{0}}{{T}_{0}}=\frac{{P}_{1}}{{T}_{1}}$
ËùÒÔ ${P}_{1}=\frac{{P}_{0}{T}_{1}}{{T}_{0}}$
´úÈëÊý¾ÝµÃ£º${P}_{1}=1.2¡Á1{0}^{5}$Pa
£¨2£©¶Ô»îÈû½øÐÐÊÜÁ¦·ÖÎö£¬¿É֪ζȸıäºó£¬»îÈûÊÜÁ¦´óС²»±ä£¬ËùÒÔ»îÈûÏòÓÒÒÆ¶¯ºó£¬ÆøÌåµÄѹǿ²»±ä£®»îÈûÏòÓÒÒÆ¶¯ºó£¬ÆøÌåÌå»ýÔö´ó
ÓÉ $\frac{{V}_{1}}{{T}_{1}}=\frac{{V}_{2}}{{T}_{2}}$¿ÉÖª£¬´ËʱζÈÉý¸ß£®
$\frac{{£¨{S_1}+{S_2}£©L}}{T_0}=\frac{{{S_2}£¨L-¡÷L£©+{S_1}£¨L+¡÷L£©}}{T}$
½âµÃ£º$T={T_0}+\frac{{£¨{S_1}-{S_2}£©¡÷L}}{{£¨{S_1}+{S_2}£©L}}{T_0}$
´úÈëÊý¾ÝµÃ£ºT=320K
´ð£º£¨1£©ÈôÓö¤×Ó½«»îÈû¹Ì¶¨£¬È»ºó½«¸×ÄÚÆøÌ建Âý¼ÓÈȵ½360K£¬´Ëʱ¸×ÄÚÆøÌåµÄѹǿÊÇ1.2¡Á105Pa£®
£¨2£©ÆøÌåµÄζÈΪ320K£®
µãÆÀ ¸ÃÌ⿼²éÀíÏëÆøÌåµÄ״̬·½³ÌµÄÓ¦Ó㬽â´ð±¾Ìâ¹Ø¼ü¶Ô»îÈûÊÜÁ¦·ÖÎöºóµÃµ½·â±ÕÆøÌåÊǵÈѹ±ä»¯£¬È»ºó¸ù¾Ý״̬·½³ÌÁз½³ÌÇó½â£¬²»ÄÑ£®
| A£® | ÖØÁ¦×ö¹¦2mgR | B£® | »úеÄܼõÉÙmgR | ||
| C£® | ºÏÁ¦×ö¹¦mgR | D£® | ¿Ë·þĦ²ÁÁ¦×ö¹¦$\frac{1}{2}$mgR |
| A£® | $\frac{1}{2}$T | B£® | T | C£® | $\sqrt{2}$T | D£® | $\frac{\sqrt{2}}{2}$T |
| A£® | ´«ËÍ´øµÄËÙ¶ÈΪ$\frac{x}{T}$ | |
| B£® | ´«ËÍ´øµÄËÙ¶ÈΪ2$\sqrt{2¦Ìgx}$ | |
| C£® | ÿ¸ö¹¤¼þÓë´«ËÍ´ø¼äÒòĦ²Á¶ø²úÉúµÄÈÈÁ¿Îª$\frac{1}{2}$¦Ìmgx | |
| D£® | ÔÚÒ»¶ÎÏ൱³¤µÄʱ¼ätÄÚ£¬´«ËÍ´øÒòΪ´«Ë͹¤×÷¶ø¶àÏûºÄµÄÄÜÁ¿Îª$\frac{mt{x}^{2}}{{T}^{2}}$ |
| A£® | aµãµÄµçÊÆÎª4V | B£® | OµãµÄµçÊÆÎª5V | ||
| C£® | µç³¡Ç¿¶È·½ÏòÓÉOµãÖ¸Ïòbµã | D£® | µç³¡Ç¿¶ÈµÄ´óСΪ10$\sqrt{5}$v/m |
| A£® | ¿ªÆÕÀÕ | B£® | Å£¶Ù | C£® | ¿¨ÎĵÏÐí | D£® | °®Òò˹̹ |