ÌâÄ¿ÄÚÈÝ
20£®£¨1£©ÇóÔÈÇ¿µç³¡µÄ³¡Ç¿E1ÓëE2µÄ±ÈÖµ£®
£¨2£©ÈôÔÚµÚËÄÏóÏÞ¹ýQµã·ÅÒ»ÕÅ´¹Ö±ÓÚxOyÆ½ÃæµÄ¸Ð¹â½ºÆ¬£¬Î»ÖÃÈçͼËùʾ£¬QµãµÄ×ø±êΪ£¨0£¬-y0£©£¬Çó¸Ð¹â½ºÆ¬ÉÏÆØ¹âµãµÄºá×ø±êxA¡äºÍxB¡äµÄ±ÈÖµ£®
·ÖÎö £¨1£©·Ö±ð¸ù¾ÝÁ£×Ó×öÀàÆ½Å×Ô˶¯£¬½«ÆäÔ˶¯·Ö½â£¬´Ó¶øÓɶ¯Á¦Ñ§Çó½â£»
£¨2£©Á£×Ó×öÀàÆ½Å×Ô˶¯£¬ËÙ¶ÈÆ«×ª½ÇµÄÕýÇÐÖµµÈÓÚÎ»ÒÆ·½ÏòÓë³õËÙ¶È·½Ïòƫת½ÇÕýÇÐÖµµÄ2±¶£»ÓÉËÙ¶ÈÓë¼Ð½ÇµÄ¹ØÏµ£¬¼°Ô˶¯Ñ§¹«Ê½£¬¿ÉÇó³ö¸Ð¹â½ºÆ¬ÆØ¹âµãºá×ø±êÖ®±È£®
½â´ð
½â£º£¨1£©µç×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬³¡Ç¿ÎªE1ʱ£¬¼ÓËÙ¶ÈΪa1£¬Ôò£º
a1=$\frac{eE1}{m}$ y0=$\frac{1}{2}{a}_{1}{t}_{1}^{2}$
xA=v0t1
½âµÃ£ºE1=$\frac{2m{y}_{0}{v}_{0}^{2}}{e{x}_{A}^{2}}$
ͬÀí¿ÉµÃ£ºE2=$\frac{2m{y}_{0}{v}_{0}^{2}}{e{x}_{B}^{2}}$
ÁªÁ¢ÒÔÉϸ÷ʽµÃ£º$\frac{{E}_{1}}{{E}_{2}}$=$\frac{{x}_{B}^{2}}{{x}_{A}^{2}}$£®
£¨2£©ÒòΪµç×ÓÔÚÔÈÇ¿µç³¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ËùÒÔµç×Ӵӵ糡ÖÐÉä³öʱ£¬ÆäËٶȵķ´ÏòÑÓ³¤ÏßÓëÆäË®Æ½Î»ÒÆ½»ÓÚË®Æ½Î»ÒÆµÄÖе㴦£®µ±³¡Ç¿ÎªE1ʱ£¬µç×ӵĹ켣ÈçͼËùʾ£¬Óɼ¸ºÎ¹ØÏµ¿ÉµÃ£º0x¡äA=$\frac{3}{2}$xA
ͬÀí¿ÉµÃ£ºx¡äB=$\frac{3}{2}$xB
ÁªÁ¢ÉÏÃæÁ½Ê½µÃ£º$\frac{{x}_{A}¡ä}{{x}_{B}¡ä}$=$\frac{{x}_{A}}{{x}_{B}}$£®
´ð£º£¨1£©ÔÈÇ¿µç³¡µÄ³¡Ç¿E1ÓëE2µÄ±ÈÖµ$\frac{{x}_{B}^{2}}{{x}_{A}^{2}}$£®
£¨2£©¸Ð¹â½ºÆ¬ÉÏÆØ¹âµãµÄºá×ø±êxA¡äºÍxB¡äµÄ±ÈÖµÊÇ$\frac{{x}_{A}}{{x}_{B}}$£®
µãÆÀ ±¾Ì⿼²éÁ£×Ó×öÀàÆ½Å×Ô˶¯Ê±£¬ÈçºÎ´¦Àí´ËÔ˶¯£¬¼°ÐγɽâÌâµÄ·½·¨£®ÕÆÎÕͨ¹ý»³öÔ˶¯Í¼À´°ïÖú·ÖÎö½âÌ⣬ͬʱ»¹ÀûÓÃÊýѧº¯Êý֪ʶÀ´Ñ°ÕÒʸÁ¿¹ØÏµ£®
| A£® | AµãµÄµçÊÆ´óÓÚBµãµÄµçÊÆ | B£® | AµãµÄµçÊÆÐ¡ÓÚBµãµÄµçÊÆ | ||
| C£® | µç³¡Á¦¶ÔqÏÈ×öÕý¹¦ºó×ö¸º¹¦ | D£® | µç³¡Á¦¶ÔqÏÈ×ö¸º¹¦ºó×öÕý¹¦ |
| A£® | EA£¾EB | B£® | EA£¼EB | C£® | ¦ÕA£¾¦ÕB | D£® | ¦ÕA£¼¦ÕB |
| A£® | Ôö´óµç³¡Ç¿¶È | B£® | Ôö´óÁ£×ÓÈëÉäËÙ¶È | ||
| C£® | ¼õСÁ£×ÓµçÁ¿ | D£® | Ôö´ó´Å¸ÐӦǿ¶È |