ÌâÄ¿ÄÚÈÝ
4£®ÎïÀíС×éÔÚÒ»´ÎÑéÖ¤»úеÄÜÊØºã¶¨ÂɵÄʵÑéÖУ¬ÊµÑé×°ÖÃÈçͼ¼×Ëùʾ£¬Æøµæµ¼¹ì·ÅÖÃÔÚˮƽ×ÀÃæÉÏ£¬Ò»¶Ë×°Óй⻬µÄ¶¨»¬ÂÖ£»µ¼¹ìÉÏÓÐÒ»»¬¿é£¬ÆäÒ»¶ËÓë´©¹ýµç´Å´òµã¼ÆÊ±Æ÷µÄÖ½´øÏàÁ¬£¬ÁíÒ»¶Ëͨ¹ý¿ç¹ý¶¨»¬ÂÖµÄϸÏßÓëÍÐÅÌÁ¬½Ó£®´òµã¼ÆÊ±Æ÷ʹÓõĽ»Á÷µçÔ´µÄƵÂÊΪf£®¿ªÊ¼ÊµÑéʱ£¬ÔÚÍÐÅÌÖзÅÈëÊÊÁ¿íÀÂ룬ÏȽÓͨµçÔ´£¬ÔÙËÉÊֺ󻬿鿪ʼ×öÔȼÓËÙÔ˶¯£¬ÔÚÖ½´øÉÏ´ò³öһϵÁе㣮£¨1£©±¾ÊµÑé´æÔÚÒ»¸öÖØ´óµÄʧÎ󣬸ÃʧÎóÊÇ£ºÄ©ÑéÖ¤Æøµæµ¼¹ìÊÇ·ñˮƽ£®
£¨2£©Í¼ÒÒ¸ø³öµÄÊÇʵÑéÖлñÈ¡µÄÒ»ÌõÖ½´øµÄÒ»²¿·Ö£º0¡¢1¡¢2¡¢3¡¢4¡¢5¡¢6¡¢7ÊǼÆÊýµã£¬Ã¿ÏàÁÚÁ½¼ÆÊýµã¼ä»¹ÓÐ9¸ö¼ÆÊ±µãδ±ê³ö£¬¼ÆÊýµã¼äµÄ¾àÀëÈçͼËùʾ£®¸ù¾ÝͼÖÐÊý¾Ý¼ÆËãµÄ¼ÓËÙ¶Èa=$\frac{£¨{s}_{3}-{s}_{1}£©{f}^{2}}{200}$£¨ÓÃS1¡¢S3¡¢f±íʾ£©
£¨3£©ÎªÁËÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£¬ÏÂÁÐÎïÀíÁ¿Öл¹Ó¦²âÁ¿µÄÊÇCD
A£®µ¼¹ìµÄ³¤¶ÈL B£®íÀÂëµÄÖÊÁ¿m1 C£®»¬¿éµÄÖÊÁ¿m2 D£®ÍÐÅ̺ÍíÀÂëµÄ×ÜÖÊÁ¿m3
£¨4£©Èç¹ûÒÒͼÖÐS1¡¢S2¡¢S3ÊÇʵÑé¸Ä½øºó²âµÃµÄÊý¾Ý£¬Çëд³ö¼ÆÊýµã3µ½¼ÆÊýµã4µÄ¹ý³ÌÖÐÒªÑéÖ¤µÄ»úеÄÜÊØºãÊØÂɵıí´ïʽm3gs2=$\frac{1}{2}$£¨m2+m3£©[$\frac{£¨{s}_{2}+{s}_{3}£©{f}^{2}}{400}$-$\frac{£¨{s}_{1}+{s}_{2}£©{f}^{2}}{400}$]£®
·ÖÎö ·ÖÎöʵÑéÔÀí¼°ÊµÑé×ö·¨£¬Ôò¿ÉµÃ³öʵÑéÖÐӦעÒâÊÂÏî¼°Ó¦²âÁ¿µÄÎïÀíÁ¿£»¸ù¾ÝʵÑéÔÀí½áºÏ»úеÄÜÊØºã¶¨Âɿɵóö±í´ïʽ£®
½â´ð ½â£º£¨1£©ÔÚ±¾ÊµÑéÖÐÓ¦Ñé֤ʵÑéµ¼¹ìÊÇ·ñˮƽ£¬¶ø±¾ÌâÖÐûÓнøÐÐÑéÖ¤£»
£¨2£©ÓÉÓÚÌâÄ¿ÖÐÖ»¸ø³öÁËÈý×éÊý¾Ý£¬¹Ê¿É²ÉÓÃÆäÖÐÈÎÁ½×飬±¾ÌâÖвÉÓÃs1ºÍs3£»ÔòÓУºs3-s1=2aT2£»ÒòÖмäÓÐ10¸ö¼ä¾à£¬¹ÊT=$\frac{10}{f}$£»
ÔòÓУºa=$\frac{£¨{s}_{3}-{s}_{1}£©{f}^{2}}{200}$£»
£¨3£©¸ù¾ÝʵÑéÔÀí¿ÉÖª£¬±¾ÊµÑéÖÐíÀÂëºÍÍÐÅ̵ÄÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚ×ܵ͝ÄܵÄÔö¼ÓÁ¿£»¹ÊÓ¦²âÁ¿»¬¿éµÄÖÊÁ¿m2 ºÍÍÐÅ̺ÍíÀÂëµÄ×ÜÖÊÁ¿m3
£¨4£©·Ö±ðÇó³ö34Á½µãµÄËÙ¶Èv3=$\frac{{s}_{1}+{s}_{2}}{20}f$£»v4=$\frac{{s}_{2}+{s}_{3}}{20}f$£»
ÎïÌåϽµµÄ¸ß¶ÈΪs2£»ÔòÓÉ»úеÄÜÊØºã¶¨ÂÉ¿ÉÖª£»
m3gs2=$\frac{1}{2}$£¨m2+m3£©[$\frac{£¨{s}_{2}+{s}_{3}£©{f}^{2}}{400}$-$\frac{£¨{s}_{1}+{s}_{2}£©{f}^{2}}{400}$]
¹Ê´ð°¸Îª£º£¨1£©Ä©ÑéÖ¤Æøµæµ¼¹ìÊÇ·ñˮƽ£»£¨2£©$\frac{£¨{s}_{3}-{s}_{1}£©{f}^{2}}{200}$£»£¨3£©CD£»£¨4£©m3gs2=$\frac{1}{2}$£¨m2+m3£©[$\frac{£¨{s}_{2}+{s}_{3}£©{f}^{2}}{400}$-$\frac{£¨{s}_{1}+{s}_{2}£©{f}^{2}}{400}$]
µãÆÀ ±¾ÌâΪ̽¾¿ÐÔʵÑ飬ҪעÒâÕýÈ·ÕÆÎÕʵÑéÔÀí£¬Äܸù¾ÝÌâÒâÃ÷ȷʵÑéµÄÔÀí£»ÕâÑù²ÅÄÜ׼ȷÇó½â£®
| A£® | ÎïÌåA¶ÔÎïÌåBµÄµ¯Á¦·½ÏòÑØÐ±ÃæÏòÉÏ | |
| B£® | ÎïÌåAÊܵ½4¸öÁ¦µÄ×÷Óà | |
| C£® | ÎïÌåB¶ÔÐ±ÃæµÄµÈÓÚmgcosa | |
| D£® | ÎïÌåB¶ÔÎïÌåAµÄѹÁ¦´óÓÚmgsina |
| A£® | $\frac{l^3}{{G¦È{t^2}}}$ | B£® | $\frac{{{l^3}¦È}}{{G{t^2}}}$ | C£® | $\frac{{{l^{\;}}}}{{G¦È{t^2}}}$ | D£® | $\frac{l^2}{{G¦È{t^2}}}$ |
| A£® | AËùÊܺÏÍâÁ¦Ôö´ó | B£® | Ç½Ãæ¶ÔAµÄĦ²ÁÁ¦Ò»¶¨Ôö´ó | ||
| C£® | B¶ÔµØÃæµÄѹÁ¦Ò»¶¨²»±ä | D£® | Ç½Ãæ¶ÔAµÄĦ²ÁÁ¦¿ÉÄܱäС |
| A£® | XÐÇÇòµÄÖÊÁ¿ÎªM=$\frac{4¦Ð{r}_{1}^{3}}{G{{T}_{1}}^{2}}$ | |
| B£® | XÐÇÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪgx=$\frac{4{¦Ð}^{2}{r}_{1}}{{T}_{1}^{2}}$ | |
| C£® | µÇ½²ÕÔڰ뾶Ϊr2µÄ¹ìµÀÉÏ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT2=T1$\sqrt{\frac{{r}_{1}^{3}}{{r}_{2}^{3}}}$ | |
| D£® | µÇ½²ÕÔڰ뾶Ϊr1Óër2¹ìµÀÉÏÔ˶¯Ê±µÄÏßËÙ¶È´óС֮±ÈΪ$\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{{r}_{2}}{{r}_{1}}}$ |
| A£® | СÇòµÄ¶¯ÄܼõСÁËmgH | B£® | СÇò»úеÄܼõСÁËFH | ||
| C£® | СÇòÖØÁ¦ÊÆÄܼõСÁËmgH | D£® | СÇò¿Ë·þ¿ÕÆø×èÁ¦×ö¹¦£¨F+mg£©H |