ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÊÔÇó¸ËËùÊܵݲÅàÁ¦FËæÆäÎ»ÒÆx±ä»¯µÄº¯Êýʽ£®
£¨2£©Çó³ö¸Ë¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯¹ý³ÌÖÐͨ¹ýRµÄµçÁ¿£®
£¨3£©Çó´Ó¿ªÊ¼µ½»¬¹ýµÄÎ»ÒÆÎªÈ«³ÌÒ»°ëʱµç·ÖвúÉúµÄ½¹¶úÈÈ£®
·ÖÎö £¨1£©¸ËÔڴų¡ÖÐÏòÓÒÔ˶¯Ê±£¬Çиî´Å¸ÐÏß²úÉú¸ÐÓ¦µçÁ÷£¬Êܵ½Ïò×óµÄ°²Åà×èÁ¦×÷Ó㬸ù¾ÝF=BIL£¬I=$\frac{BLv}{R}$£¬ÒÔ¼°¸ËµÄËÙ¶ÈvºÍÎ»ÒÆxµÄº¯Êý¹ØÏµÊ½v=v0-B2L2$\frac{x}{mR}$£¬ÁªÁ¢¼´¿ÉµÃµ½°²ÅàÁ¦FËæÆäÎ»ÒÆx±ä»¯µÄº¯Êýʽ£®
£¨2£©¸ù¾Ý¶¯Á¿¶¨ÀíºÍµçÁ¿¹«Ê½q=ItÇó½âµçÁ¿q£®
£¨3£©ÏÈÇó³ö»¬¶¯µ½Ò»°ëÎ»ÒÆÊ±µÄËÙ¶È£¬¸ËÔÚÔ˶¯¹ý³ÌÖУ¬¸Ë¼õÉٵ͝ÄÜÍêȫת»¯Îªµç×èRµÄÈÈÁ¿£¬¸ù¾ÝÄÜÁ¿ÊغãÇó½âµç×èR²úÉúµÄÈÈÁ¿Q£®
½â´ð ½â£º£¨1£©¸ËÔڴų¡ÖÐÏòÓÒÔ˶¯Ê±£¬ËùÊܵݲÅàÁ¦Îª£ºF=BIL£¬ÆäÖУºI=$\frac{BLv}{R}$£¬
¾ÝÌâÒ⣬¸ËµÄËÙ¶ÈvºÍÎ»ÒÆxµÄº¯Êý¹ØÏµÎª£ºv=v0-B2L2$\frac{x}{mR}$£¬
ËùÒÔÓУºF=$\frac{{B}_{\;}^{2}{L}_{\;}^{2}}{R}$v=$\frac{{B}_{\;}^{2}{L}_{\;}^{2}}{R}$£¨v0-B2L2$\frac{x}{mR}$£©
ÓÉÉÏʽ¿ÉÖª£¬°²ÅàÁ¦FÓëÎ»ÒÆx³ÉÏßÐÔ¹ØÏµ£®
£¨2£©¸ù¾Ý¶¯Á¿¶¨ÀíµÃ£º-B$\overline{I}$L¡÷t=0-mv0£¬
ÔòÓУºq=I¡÷t=$\frac{m{v}_{0}^{\;}}{BL}$
£¨3£©µ±v=0ʱ£¬$x=\frac{mR{v}_{0}^{\;}}{{B}_{\;}^{2}{L}_{\;}^{2}}$
µ±$x¡ä=\frac{x}{2}$ʱ£¬$v={v}_{0}^{\;}-{B}_{\;}^{2}{L}_{\;}^{2}¡Á\frac{1}{mR}¡Á\frac{1}{2}¡Á\frac{mR{v}_{0}^{\;}}{{B}_{\;}^{2}{L}_{\;}^{2}}$=$\frac{{v}_{0}^{\;}}{2}$
¸ù¾ÝÄÜÁ¿Êغ㣺${Q}_{1}^{\;}=\frac{1}{2}m{v}_{0}^{2}-\frac{1}{2}m£¨\frac{{v}_{0}^{\;}}{2}£©_{\;}^{2}=\frac{3}{8}m{v}_{0}^{2}$
´ð£º£¨1£©¸ËËùÊܵݲÅàÁ¦FËæÆäÎ»ÒÆx±ä»¯µÄº¯ÊýʽΪF=$\frac{{B}_{\;}^{2}{L}_{\;}^{2}}{R}$£¨v0-B2L2$\frac{x}{mR}$£©£®
£¨2£©¸Ë¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯¹ý³ÌÖÐͨ¹ýRµÄµçÁ¿qΪ=$\frac{m{v}_{0}^{\;}}{BL}$£®
£¨3£©¸Ë¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯¹ý³ÌÖеç×èR²úÉúµÄÈÈÁ¿QΪ$\frac{3}{8}m{v}_{0}^{2}$
µãÆÀ ±¾ÌâÖеç´Å¸ÐÓ¦ÖÐÁ¦Ñ§ÎÊÌ⣬·ÖÎöºÍ¼ÆËã°²ÅàÁ¦ÊǽâÌâµÄ¹Ø¼ü£¬ÔËÓÃÄÜÁ¿Êغ㡢ŷķ¶¨ÂÉ¡¢·¨ÀµÚµç´Å¸ÐÓ¦¶¨Âɼ°²¢Áª¡¢´®ÁªµÄÌØµã½øÐзÖÎöºÍÇó½â£®
| A£® | ÖʵãÔÚµÚ1ÃëĩֹͣÔ˶¯ | B£® | ÖʵãÔÚǰ2ÃëÄÚµÄÎ»ÒÆÎªÁã | ||
| C£® | ÖʵãÔÚµÚ1ÃëÄ©¸Ä±äÔ˶¯·½Ïò | D£® | ÖʵãÔÚµÚ2ÃëÄÚ×ö¼õËÙÔ˶¯ |
| A£® | ½ðÊô°ô¿Ë·þ°²ÅàÁ¦×öµÄ¹¦µÈÓÚÆä»úеÄܵļõÉÙÁ¿ | |
| B£® | ÖØÁ¦ºÍ°²ÅàÁ¦¶Ô½ðÊô°ô×ö¹¦Ö®ºÍµÈÓÚ½ðÊô°ôÔö¼ÓµÄ¶¯ÄÜ¡¢µç·²úÉúµÄÈÈÁ¿Ö®ºÍ | |
| C£® | »¬¶¯±ä×èÆ÷½ÓÈëµç·µÄµç×èԽС£¬½ðÊô°ôÔÈËÙÔ˶¯Ê±Êܵ½µÄ°²ÅàÁ¦Ô½´ó | |
| D£® | ¸Ä±ä»¬¶¯±ä×èÆ÷½ÓÈëµç·µÄµç×裬µ±½ðÊô°ôÔÈËÙÔ˶¯ºóR1µÄµç¹¦ÂÊ×î´óʱ£¬R1¡¢R2¡¢R3µÄ¹¦ÂÊÖ®±ÈΪP1£ºP2£ºP3=2£º1£º6 |
| A£® | k$\frac{{q}^{2}}{{d}^{2}}$ | B£® | k$\frac{{q}^{2}}{2{d}^{2}}$ | ||
| C£® | k$\frac{{q}^{2}}{4{d}^{2}}$ | D£® | ÒÔÉÏÈý¸ö´ð°¸¾ù´íÎó |
| A£® | СÎïÌåÓë¼×´«ËÍ´øÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý±ÈÓëÒÒÖ®¼äµÄС | |
| B£® | Á½´«ËÍ´ø¶ÔСÎïÌå×ö¹¦ÏàµÈ | |
| C£® | ÎïÌåÔÚ¼×´«ËÍ´øÉϵÄÖØÁ¦×ö¹¦µÄƽ¾ù¹¦ÂʱÈÔÚÒÒÉϵĴó | |
| D£® | Á½´«ËÍ´øÒòÓëСÎïÌåĦ²Á²úÉúµÄÈÈÁ¿ÏàµÈ |