ÌâÄ¿ÄÚÈÝ
10£®£¨1£©Á£×Óµ½´ïСԲÖÜÉÏʱµÄËÙ¶ÈΪ¶à´ó£¿
£¨2£©Á£×ÓÒÔ£¨1£©ÖеÄËٶȽøÈëÁ½Ô²¼äµÄ´Å³¡ÖУ¬µ±´Å¸ÐӦǿ³¬¹ýijһÁÙ½çֵʱ£¬Á£×Ó½«²»Äܵ½´ï´óÔ²ÖÜ£¬Çó´Ë´Å¸ÐӦǿ¶ÈµÄ×îСֵB£®
£¨3£©Èôµ±´Å¸ÐӦǿ¶ÈÈ¡£¨2£©ÖÐ×îСֵ£¬ÇÒb=£¨$\sqrt{2}$+1£©aʱ£¬Á£×ÓÔ˶¯Ò»¶Îʱ¼äºóÇ¡ºÃÄÜÑØxÖḺ·½Ïò»Øµ½Ô³ö·¢µã£¬ÇóÁ£×Ó´ÓÒݳöµ½µÚÒ»´Î»Øµ½Ô³ö·¢µãµÄ¹ý³ÌÖУ¬Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä£®£¨ÉèÁ£×ÓÓë½ðÊôÇòÕýÅöºóµçÁ¿²»±äÇÒÄÜÒÔÔËÙÂÊÔ··µ»Ø£©
·ÖÎö £¨1£©¸ù¾Ý¶¯Äܶ¨Àí£¬Í¨¹ýÄ©¶¯ÄÜÇó³ö¼ÓËÙµçѹµÄ´óС£®
£¨2£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶µÄ±í´ïʽ£¬ÒªÊ¹Á£×Ó²»Äܵ½´ï´óÔ²ÖÜ£¬Æä×î´óµÄÔ²°ë¾¶Îª¹ì¼£Ô²Óë´óÔ²ÖÜÏàÇУ®
£¨3£©¸ù¾ÝÌâÄ¿¸ø¶¨µÄÌõ¼þ£¬»³ö´øµçÁ£×ÓÔ˶¯µÄ¹ì¼££¬´Ó¶øÈ·¶¨Á£×ÓÔڴų¡ÖÐת¹ý¦Õ=270¡ã£¬È»ºóÑØ°ë¾¶½øÈëµç³¡¼õËÙµ½´ï½ðÊôÇò±íÃæ£¬ÔÙ¾µç³¡¼ÓËÙÔ··µ»Ø´Å³¡£¬Èç´ËÖØ¸´£¬Ç¡ºÃ¾¹ý4¸ö»ØÐýºó£¬ÑØÓëÔ³öÉä·½ÏòÏà·´µÄ·½Ïò»Øµ½Ô³ö·¢µã£®
½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖмÓËÙ£¬¸ù¾Ý¶¯Äܶ¨Àí£¬µÃ£º
$qU=\frac{1}{2}m{v^2}$£¬
ËùÒÔ $v=\sqrt{\frac{2qU}{m}}$
£¨2£©Á£×Ó½øÈë´Å³¡ºó£¬ÊÜÂçÂ××ÈÁ¦×öÔÈËÙÔ²ÖÜÔ˶¯£¬
ÓÐ$qvB=m\frac{v^2}{r}$
ҪʹÁ£×Ó²»Äܵ½´ï´óÔ²ÖÜ£¬Æä×î´óµÄÔ²°ë¾¶Îª¹ì¼£Ô²Óë´óÔ²ÖÜÏàÇУ¬Èçͼ£®![]()
ÔòÓУº$\sqrt{{a^2}+{r^2}}=b-r$
ËùÒÔ£º$r=\frac{{{b^2}-{a^2}}}{2b}$
ÁªÁ¢½âµÃ£º
$B=\frac{2b}{{{b^2}-{a^2}}}\sqrt{\frac{2mU}{q}}$
£¨3£©ÓÉͼ¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐת¦Õ=270¡ã£¬È»ºóÑØ°ë¾¶½øÈëµç³¡¼õËÙµ½´ï½ðÊôÇò±íÃæ£¬ÔÙ¾µç³¡¼ÓËÙÔ··µ»Ø´Å³¡£¬Èç´ËÖØ¸´£¬Ç¡ºÃ¾¹ý4¸ö»ØÐýºó£¬ÑØÓëÔ³öÉä·½ÏòÏà·´µÄ·½Ïò»Øµ½Ô³ö·¢µã£®
ÒòΪ$qvB=m\frac{v^2}{r}$£¬$T=\frac{2¦Ðr}{v}$
½«B´úÈ룬µÃÁ£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼äΪ $t=\frac{3¦Ð£¨{b}^{2}-{a}^{2}£©}{2b}\sqrt{\frac{m}{2qU}}$£®
´ð£º£¨1£©Á£×Óµ½´ïСԲÖÜÉÏʱµÄËÙ¶ÈΪ$\sqrt{\frac{2qU}{m}}$£»
£¨2£©µ±´Å¸ÐӦǿ¶È³¬¹ýijһÁÙ½çֵʱ£¬Á£×Ó½«²»Äܵ½´ï´óÔ²ÖÜ£¬´Ë×îСֵΪ$\frac{2b}{{b}^{2}-{a}^{2}}\sqrt{\frac{2mU}{q}}$£»
£¨3£©ÒªÁ£×ÓÇ¡ºÃµÚÒ»´ÎÑØÒݳö·½ÏòµÄ·´·½Ïò»Øµ½Ô³ö·¢µã£¬Á£×ÓÐè¾¹ý4´Î»ØÐý£»Á£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪ$\frac{3¦Ð£¨{b}^{2}-{a}^{2}£©}{2b}\sqrt{\frac{m}{2qU}}$£®
µãÆÀ ±¾ÌâÁ£×ÓÔÚÓÐÔ²Ðα߽çµÄ´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎÊÌ⣬»³ö¹ì¼££¬¸ù¾Ý¼¸ºÎ֪ʶ·ÖÎöÁÙ½çÌõ¼þ£¬Çó°ë¾¶ºÍÔ²ÐĽÇÊdz£ÓõÄ˼·£®
| A£® | ÏßËÙ¶È$\sqrt{\frac{GM}{2R}}$ | B£® | ½ÇËٶȦØ=$\sqrt{gR}$ | ||
| C£® | ÏòÐļÓËÙ¶Èa=$\frac{GM}{{R}^{2}}$ | D£® | ÔËÐÐÖÜÆÚT=4¦Ð$\sqrt{\frac{2R}{g}}$ |
| A£® | ÈËÖ»ÓÐÔÚ¾²Ö¹µÄ³µÏáÄÚ£¬ÊúÖ±ÏòÉϸ߸ßÌøÆðºó£¬²Å»áÂäÔÚ³µÏáµÄÔÀ´Î»Öà | |
| B£® | ÈËÔÚÑØÖ±ÏßÔÈËÙǰ½øµÄ³µÏáÄÚ£¬ÊúÖ±ÏòÉϸ߸ßÌøÆðºó£¬½«ÂäÔÚÆðÌøµãµÄºó·½ | |
| C£® | ÈËÔÚÑØÖ±Ïß¼õËÙǰ½øµÄ³µÏáÄÚ£¬ÊúÖ±ÏòÉϸ߸ßÌøÆðºó£¬½«ÂäÔÚÆðÌøµãµÄºó·½ | |
| D£® | ÈËÔÚÑØÖ±Ïß¼ÓËÙǰ½øµÄ³µÏáÄÚ£¬ÊúÖ±ÏòÉϸ߸ßÌøÆðºó£¬½«ÂäÔÚÆðÌøµãµÄºó·½ |
| A£® | ÆøÌåµÄζȱ£³Ö²»±ä | B£® | ÆøÌåÄÚÿ¸ö·Ö×ӵ͝Äܶ¼Ôö´ó | ||
| C£® | Íâ½ç¶ÔÆøÌå×ö¹¦ | D£® | ÆøÌåÎüÊÕÈÈÁ¿ |
| A£® | ÌõÐδÅÌúµÄÖØÁ¦ÊÆÄܺͶ¯ÄÜÖ®ºÍÔÚ¼õÉÙ | |
| B£® | ÏßȦ¶ÔÌõÐδÅÌúÏÈ×ö¸º¹¦£¬ºó×öÕý¹¦ | |
| C£® | ´©¹ýÏßȦµÄ´ÅͨÁ¿Ò»Ö±Ôö¼Ó | |
| D£® | ÌõÐδÅÌúÏ൱ÓÚÒ»¸öµçÔ´ |
| A£® | 40N | B£® | 30N | C£® | 50N | D£® | 10N |
£¨2£©ÔÚÓõçÁ÷±íºÍµçѹ±í²â¸Éµç³ØµÄµç¶¯ÊƺÍÄÚµç×èµÄʵÑéÖУ¬Ò»Î»Í¬Ñ§¸ù¾ÝʵÑé²âµÃµÄ5×éÊý¾ÝÈç±í£¬ÇëÔÚ·½¸ñÖ½ÉÏ£¨¼û´ð¾í£©±ê³ö¶ÔÓ¦µÄ×ø±êµã£¨·ûºÅΪ¡°•¡±£©£¬»³öU-IͼÏߣ®ÀûÓÃͼÏß¿ÉÇó³öµçÔ´µç¶¯ÊÆE=1.45V£¬ÄÚµç×èr=0.69¦¸£®
| 1 | 2 | 3 | 4 | 5 | |
| I/A | 0.45 | 0.36 | 0.25 | 0.15 | 0.10 |
| U/V | 1.04 | 1.13 | 1.24 | 1.34 | 1.40 |