ÌâÄ¿ÄÚÈÝ
2£®¡¶·ßŵÄСÄñ¡·ÊÇÒ»¿îʱÏ·dz£Á÷ÐеÄÓÎÏ·£¬¹ÊÊÂÒ²Ï൱ÓÐȤ£¬Èçͼ¼×Ëùʾ£¬ÎªÁ˱¨¸´Íµ×ßÄñµ°µÄ·ÊÖíÃÇ£¬Äñ¶ùÒÔ×Ô¼ºµÄÉíÌåΪÎäÆ÷£¬ÈçÅÚµ¯°ãµ¯Éä³öÈ¥¹¥»÷·ÊÖíÃǵı¤ÀÝ£®¼ÙÉèСÄñ±»µ¯¹ÑØË®Æ½·½Ïòµ¯³öµÄ³¡¾°ÈçͼÒÒËùʾ£¬Ð¡Äñ±»Ë®Æ½µ¯³öʱµÄ³õλÖÃÀëÌ¨ÃæµÄÊúÖ±¸ß¶ÈΪh1=0.8m£¬ÀëÌ¨ÃæÓҶ˵Äˮƽ¾àÀëΪl1=2m£¬Ì¨ÃæÀëµØÃæµÄ¸ß¶ÈΪh2=2.4m£¬·ÊÖíµÄ±¤ÀÝÀëÌ¨ÃæÓҶ˵Äˮƽ¾àÀëΪl2=1m£®ÖØÁ¦¼ÓËÙ¶ÈgÈ¡10m/s2£¬²»¼Æ¿ÕÆø×èÁ¦£®Çë»Ø´ðÏÂÃæµÄÎÊÌ⣺£¨1£©Ð¡Äñˮƽ·É³öÄÜ·ñÖ±½Ó´òÖзÊÖíµÄ±¤ÀÝ£¿Çëͨ¹ý¼ÆËã½øÐÐÃ÷£®
£¨2£©Èç¹ûСÄñÒÔ³õËÙ¶Èv0=3m/sˮƽµ¯³öºó£¬Ïȵôµ½Ì¨ÃæµÄ²ÝµØÉÏ£¬½Ó´¥Ì¨ÃæË²¼äÊúÖ±ËٶȱäΪÁ㣬ˮƽËٶȲ»±ä£¬Ð¡ÄñÔڲݵØÉÏ»¬ÐÐÒ»¶Î¾àÀëºó·É³ö£¬½á¹ûÇ¡ºÃ´òÖзÊÖíµÄ±¤ÀÝ£¬ÔòСÄñºÍ²ÝµØ¼äµÄ¶¯Ä¦²ÁÒòÊý¦ÌΪ¶àÉÙ£¿£¨½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
·ÖÎö £¨1£©¼ÙÉèСÄñ¿ÉÒÔÖ±½Ó»÷Öб¤ÀÝ£¬¸ù¾Ý¸ß¶ÈÇó³öƽÅ×Ô˶¯µÄʱ¼ä£¬½áºÏË®Æ½Î»ÒÆÇó³öСÄñµÄ³õËÙ¶È£¬¸ù¾ÝСÄñµ½Ì¨ÃæµÄ¸ß¶ÈÇó³öƽÅ×Ô˶¯µÄʱ¼ä£¬Çó³öÏÂÂäh1µÄË®Æ½Î»ÒÆ£¬ÅжÏÊÇ·ñ»áÂäÔÚÌ¨Ãæ²ÝµØÉÏ£¬´Ó¶øÅжÏСÄñÄÜ·ñÖ±½Ó»÷ÖзÊÖíµÄ±¤ÀÝ£®
£¨2£©¸ù¾Ýh2µÄ¸ß¶ÈºÍË®Æ½Î»ÒÆÇó³öСÄñÀë¿ªÌ¨ÃæÊ±µÄËÙ¶È£¬¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½Çó³öÔÚÌ¨Ãæ²ÝµØÉÏÔȼõËÙÖ±ÏßÔ˶¯µÄ¼ÓËÙ¶È£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¶¯Ä¦²ÁÒòÊý£®
½â´ð ½â£º£¨1£©ÉèСÄñÒÔv0µ¯³öÄÜÖ±½Ó»÷Öб¤ÀÝ£¬Ôò
${h}_{1}+{h}_{2}=\frac{1}{2}g{t}^{2}$£¬
½âµÃt=$\sqrt{\frac{2£¨{h}_{1}+{h}_{2}£©}{g}}=\sqrt{\frac{2¡Á3.2}{10}}s=0.8s$£¬
l1+l2=v0t£¬
½âµÃ£º${v}_{0}=\frac{{l}_{1}+{l}_{2}}{t}=\frac{2+1}{0.8}m/s=3.75m/s$£¬
¸ù¾Ý${h}_{1}=\frac{1}{2}g{{t}_{1}}^{2}$µÃ£¬${t}_{1}=\sqrt{\frac{2{h}_{1}}{g}}=\sqrt{\frac{2¡Á0.8}{10}}s=0.4s$£¬
Ôòx=v0t1=3.75¡Á0.4m=1.5m£¼l1£¬¿É¼ûСÄñÏÈÂäÔÚÌ¨ÃæµÄ²ÝµØÉÏ£¬²»ÄÜÖ±½Ó»÷Öб¤ÀÝ£®
£¨2£©¸ù¾Ý${h}_{2}=\frac{1}{2}g{{t}_{2}}^{2}$µÃ£¬${t}_{2}=\sqrt{\frac{2{h}_{2}}{g}}=\sqrt{\frac{2¡Á2.4}{10}}s¡Ö0.7s$£¬
ÔòÀ뿪²ÝµØÆ½Å×Ô˶¯µÄ³õËÙ¶È£º${v}_{1}=\frac{{l}_{2}}{{t}_{2}}=\frac{1}{0.7}m/s¡Ö1.43m/s$£¬
СÄñ×öƽÅ×Ô˶¯ÂäÔڲݵØÉϵÄË®Æ½Î»ÒÆ£º$x¡å={v}_{0}\sqrt{\frac{2{h}_{1}}{g}}=3¡Á\sqrt{\frac{2¡Á0.8}{10}}m=1.2m$£¬
ÔòÔȼõËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ´óС£ºx¡ä=2-1.2m=0.8m£¬
¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½µÃ£ºv02-v12=2ax¡ä
½âµÃ£ºa=$\frac{{{v}_{0}}^{2}-{{v}_{1}}^{2}}{2x¡ä}=\frac{9-1.4{3}^{2}}{2¡Á0.8}m/{s}^{2}¡Ö4.3m/{s}^{2}$£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãºa=¦Ìg£¬
½âµÃ£º$¦Ì=\frac{a}{g}=\frac{4.3}{10}=0.43$£®
´ð£º£¨1£©²»ÄÜÖ±½Ó»÷Öб¤ÀÝ£»
£¨2£©Ð¡ÄñºÍ²ÝµØ¼äµÄ¶¯Ä¦²ÁÒòÊý¦ÌΪ0.43£®
µãÆÀ ±¾Ì⿼²éÁËÆ½Å×Ô˶¯ÓëÔ˶¯Ñ§¹«Ê½µÄ×ÛºÏÔËÓ㬽â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀƽÅ×Ô˶¯ÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉ£¬ÄѶȲ»´ó£®
| A£® | ÏàͬƵÂʵĹâÕÕÉäµ½²»Í¬µÄ½ðÊôÉÏ£¬Òݳö¹¦Ô½´ó£¬³öÉäµÄ¹âµç×Ó×î´ó³õ¶¯ÄÜԽС | |
| B£® | ${\;}_{6}^{14}$CµÄ°ëË¥ÆÚΪ5730Ä꣬Èô²âµÃÒ»¹ÅÉúÎïÒź¡ÖÐ${\;}_{6}^{14}$Cº¬Á¿Ö»ÓлîÌåÖеÄ$\frac{1}{8}$£¬Ôò´ËÒź¡¾à½ñÔ¼ÓÐ17190Äê | |
| C£® | ¸ù¾Ý²£¶ûÀíÂÛ£¬ÇâÔ×Ó·øÉä³öÒ»¸ö¹â×ÓºóÄÜÁ¿¼õС£¬ºËÍâµç×ÓÔ˶¯µÄ¼ÓËٶȼõС | |
| D£® | ±È½áºÏÄÜÔ½´ó±íʾÔ×ÓºËÖеĺË×Ó½áºÏµÃÔ½Àο¿£¬Ô×ÓºËÔ½Îȶ¨ |
| A£® | ÖÜÆÚÊÇ0.02 s | B£® | ×î´óÖµÊÇ311 V | ||
| C£® | ÓÐЧֵÊÇ220 V | D£® | ±í´ïʽΪu=220sin 100¦Ðt£¨V£© |
| A£® | ±È½áºÏÄÜÔ½´ó£¬Ô×ÓºËÖкË×Ó½áºÏµÃÔ½Àι̣¬Ô×ÓºËÔ½Îȶ¨ | |
| B£® | ·ÅÉäÐÔÔªËØµÄ°ëË¥ÆÚ¸úÔ×ÓËù´¦µÄ»¯Ñ§×´Ì¬Î޹أ¬µ«ÓëÍⲿÌõ¼þÓÐ¹Ø | |
| C£® | ${\;}_{92}^{238}$UË¥±ä³É${\;}_{82}^{206}$PbÒª¾¹ý6´Î¦ÂË¥±äºÍ8´Î¦ÁË¥±ä | |
| D£® | ¸ù¾Ý²¨¶ûµÄÔ×ÓÀíÂÛ£¬ÇâÔ×ӵĺËÍâµç×ÓÓÉÄÜÁ¿½Ï¸ßµÄ¶¨Ì¬¹ìµÀԾǨµ½ÄÜÁ¿½ÏµÍµÄ¶¨Ì¬¹ìµÀʱ£¬»á·øÉäÒ»¶¨ÆµÂʵĹâ×Ó£¬Í¬Ê±ºËÍâµç×ӵ͝ÄÜÔö´ó | |
| E£® | ×ÏÍâÏßÕÕÉäµ½½ðÊôп°å±íÃæÊ±Äܹ»·¢Éú¹âµçЧӦ£¬Ôòµ±Ôö´ó×ÏÍâÏßµÄÕÕÉäÇ¿¶Èʱ£¬´Óп°å±íÃæÒݳöµÄ¹âµç×ÓµÄ×î´ó³õ¶¯ÄÜÒ²ËæÖ®Ôö´ó |
| A£® | N=m1g+m2g-Fsin ¦È | B£® | N=m1g+m2g-Fcos ¦È | ||
| C£® | f=Fcos ¦È | D£® | f=Fsin ¦È |
| A£® | AÇòÎüÊÕµÄÈÈÁ¿½Ï¶à | B£® | BÇòÎüÊÕµÄÈÈÁ¿½Ï¶à | ||
| C£® | Á½ÇòÎüÊÕµÄÈÈÁ¿Ò»Ñù¶à | D£® | ÎÞ·¨È·¶¨ |
| A£® | m¡äÓëm1¡¢m2µÄ¹ØÏµÎªm¡ä=$\frac{{m}_{2}^{3}}{£¨{m}_{1}+{m}_{2}£©^{2}}$ | |
| B£® | m¡äÓëm1¡¢m2µÄ¹ØÏµÎªm¡ä=$\frac{{m}_{1}{m}_{2}^{3}}{£¨{m}_{1}+{m}_{2}£©^{2}}$ | |
| C£® | °µÐÇBµÄÖÊÁ¿m2Óë¿É¼ûÐÇAµÄËÙÂÊv¡¢ÖÜÆÚTºÍÖÊÁ¿m1Ö®¼äµÄ¹ØÏµÎª$\frac{{m}_{2}^{3}}{£¨{m}_{1}+{m}_{2}£©^{2}}$=$\frac{{v}^{3}T}{2¦ÐG}$ | |
| D£® | °µÐÇBµÄÖÊÁ¿m2Óë¿É¼ûÐÇAµÄËÙÂÊv¡¢ÖÜÆÚm1Ö®¼äµÄ¹ØÏµÎª$\frac{{m}_{1}^{3}}{£¨{m}_{1}+{m}_{2}£©^{2}}$=$\frac{{v}^{3}T}{2¦ÐG}$ |
| A£® | v1£¼v2 | B£® | v1£¾v2 | C£® | t1=t2 | D£® | t1£¼t2 |