ÌâÄ¿ÄÚÈÝ
6£®£¨1£©ÇóС»¬¿éÔÚBµãµÄËÙ¶È´óС£»
£¨2£©ÇóС»¬¿éÔÚB´¦¶Ô¹ìµÀµÄѹÁ¦´óС£»
£¨3£©ÇóС»¬¿éÔÚC´¦µÄËÙ¶È£»
£¨4£©ÇóС»¬¿éÂ䵨µã¾àBµãµÄ¾àÀ룮
·ÖÎö £¨1£©¶ÔAB¶ÎÔËÓö¯Äܶ¨Àí£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³öBµãµÄËÙ¶È£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬½áºÏ¾¶ÏòµÄºÏÁ¦ÌṩÏòÐÄÁ¦Çó³ö»¬¿éÔÚBµãËùÊܵÄÖ§³ÖÁ¦£¬´Ó¶øµÃ³ö»¬¿é¶Ô¹ìµÀBµãµÄѹÁ¦´óС£®
£¨3£©×¥×¡»¬¿éÇ¡ºÃͨ¹ý×î¸ßµã£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öCµãµÄËÙ¶È£®
£¨4£©¸ù¾Ý¸ß¶ÈÇó³öƽÅ×Ô˶¯µÄʱ¼ä£¬½áºÏCµãµÄËٶȺÍʱ¼äÇó³öË®Æ½Î»ÒÆ£®
½â´ð ½â£º£¨1£©¸ù¾Ý¶¯Äܶ¨ÀíµÃ£¬$£¨F-¦Ìmg£©s=\frac{1}{2}m{{v}_{B}}^{2}-0$£¬
´úÈëÊý¾Ý½âµÃ${v}_{B}=5\sqrt{5}m/s$£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬$N-mg=m\frac{{{v}_{B}}^{2}}{R}$£¬
½âµÃN=$mg+m\frac{{{v}_{B}}^{2}}{R}$=$10¡Á1¡Á\frac{125}{2.5}N=60N$£®
ÔòС»¬¿éÔÚB´¦¶Ô¹ìµÀµÄѹÁ¦Îª60N£®
£¨3£©Ð¡»¬¿éÇ¡ºÃͨ¹ýCµã£¬$mg=m\frac{{{v}_{C}}^{2}}{R}$£¬
½âµÃ${v}_{C}=\sqrt{gR}$=$\sqrt{10¡Á2.5}m/s=5m/s$£®
£¨4£©¸ù¾Ý$2R=\frac{1}{2}g{t}^{2}$µÃ£¬t=$\sqrt{\frac{4R}{g}}=\sqrt{\frac{4¡Á2.5}{10}}s=1s$£¬
x=vCt=5¡Á1m=5m£®
´ð£º£¨1£©Ð¡»¬¿éÔÚBµãµÄËÙ¶È´óСΪ$5\sqrt{5}m/s$£»
£¨2£©Ð¡»¬¿éÔÚB´¦¶Ô¹ìµÀµÄѹÁ¦´óСΪ60N£»
£¨3£©Ð¡»¬¿éÔÚC´¦µÄËÙ¶ÈΪ5m/s£»
£¨4£©Ð¡»¬¿éÂ䵨µã¾àBµãµÄ¾àÀëΪ5m£®
µãÆÀ ±¾Ì⿼²éÁËÆ½Å×Ô˶¯ºÍÔ²ÖÜÔ˶¯µÄ»ù±¾ÔËÓã¬ÖªµÀƽÅ×Ô˶¯ÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉÒÔ¼°Ô²ÖÜÔ˶¯ÏòÐÄÁ¦µÄÀ´Ô´Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | $\frac{2\sqrt{3}qBL}{3m}$ | B£® | $\frac{\sqrt{3}qBL}{m}$ | C£® | $\frac{qBL}{m}$ | D£® | $\frac{qBL}{2m}$ |
| A£® | Å×Éä½ÇÔ½´ó£¬Éä¸ßÔ½´ó | B£® | Å×Éä½ÇÔ½´ó£¬Éä³ÌÔ½´ó | ||
| C£® | Å×Éä½ÇµÈÓÚ45¡ãʱ£¬Éä¸ß×î´ó | D£® | Å×Éä½ÇµÈÓÚ45¡ãʱ£¬Éä³Ì×î´ó |
| A£® | Èç¹û²¨ÏòÓÒ´«²¥£¬ÔòÖʵãaÊܵ½ÏòÉϵÄ×÷ÓÃÁ¦ | |
| B£® | Èç¹û²¨ÏòÓÒ´«²¥£¬ÔòÖʵãaÊܵ½ÏòϵÄ×÷ÓÃÁ¦ | |
| C£® | Èç¹û²¨Ïò×ó´«²¥£¬ÔòÖʵãaÊܵ½ÏòÉϵÄ×÷ÓÃÁ¦ | |
| D£® | Èç¹û²¨Ïò×ó´«²¥£¬ÔòÖʵãaÊܵ½ÏòϵÄ×÷ÓÃÁ¦ |