ÌâÄ¿ÄÚÈÝ

14£®Ä³Í¬Ñ§ÓÃͼʾװÖÃÈ¥Ñé֤СÇò°Ú¶¯¹ý³ÌÖеĻúеÄÜÊØºã£¬ÊµÑéÖÐСÇò°Úµ½×îµÍµãʱǡºÃÓë×ÀÃæ½Ó´¥µ«Ã»Óе¯Á¦£¬D´¦£¨¼ýÍ·ËùÖ¸´¦£©·ÅÒ»·æÀûµÄµ¶Æ¬£¬Ï¸Ïßµ½´ïÊúֱλÖÃʱÄܱ»¸î¶Ï£¬Ð¡Çò×öƽÅ×Ô˶¯Âäµ½µØÃ棬PÊÇÒ»¿Ì¶È³ß£®¸Ãͬѧ·½°¸µÄÓŵãÊÇÖ»ÐèÀûÓÿ̶ȳ߲âÁ¿AλÖõ½×ÀÃæµÄ¸ß¶ÈH£¬×ÀÃæµ½µØÃæµÄ¸ß¶Èh¼°Ð¡ÇòƽÅ×Ô˶¯µÄË®Æ½Î»ÒÆx¼´¿É£®
£¨1£©²âÁ¿AλÖõ½×ÀÃæµÄ¸ß¶ÈHÓ¦´ÓÇòµÄϱßÑØ£¨Ìî¡°ÇòµÄÉϱßÑØ¡±¡°ÇòÐÄ¡±»ò¡°ÇòµÄϱßÑØ¡±£©¿ªÊ¼²â£®
£¨2£©ÊµÑéÖжà´Î¸Ä±äHÖµ²¢²âÁ¿ÓëÖ®¶ÔÓ¦µÄxÖµ£¬ÀûÓÃ×÷ͼÏóµÄ·½·¨È¥ÑéÖ¤£®ÎªÁËÖ±¹ÛµÄ±íÊöHºÍxµÄ¹ØÏµ£¨Í¼ÏßΪֱÏߣ©£¬ÈôÓúáÖá±íʾH£¬Ôò×ÝÖáÓ¦±íʾx2£¨Ìî¡°x¡±¡°x2¡±»ò¡°$\sqrt{x}$¡±£©£®
£¨3£©ÈôСÇòϰڹý³ÌÖлúеÄÜÊØºã£¬Ôòh¡¢HºÍxµÄ¹ØÏµÎªH=$\frac{{x}^{2}}{4h}$£®

·ÖÎö ¸ù¾ÝÇòÏÈ×öÔ²ÖÜÔ˶¯£¬ÔÙ×öƽÅ×Ô˶¯£¬½áºÏƽÅ×´¦Àí¹æÂÉ£¬¼´¿ÉÇó½âƽÅ׵ijõËÙ¶È£¬Ëã³ö¶ÔÓ¦µÄ¶¯ÄÜ£¬ÔÙÓɿ̶ȳßÁ¿³ö¸ß¶È£¬Ëã³öÖØÁ¦ÊÆÄÜ£¬½ø¶øµÃÒÔÑéÖ¤»úеÄÜÊØºã£¬ÒòÇòÂäµØÊ±£¬ÇòϱßÑØÓëµØÃæ½Ó´¥£¬´Ó¶ø¿ÉÈ·¶¨½á¹û

½â´ð ½â£º£¨1£©²âÁ¿AλÖõ½×ÀÃæµÄ¸ß¶ÈH£¬¼´Çò×öÔ²ÖÜÔ˶¯Ï½µµÄ¸ß¶È£¬ÒòΪµ½´ï×ÀÃæÊ±ÊÇÇòµÄÏÂÑØÓë×ÀÃæ½Ó´¥£¬ËùÒÔ²âÁ¿µÄ¸ß¶ÈHÓ¦´ÓÇòµÄϱßÑØ¿ªÊ¼²â£®
£¨2£©¸ù¾Ýh=$\frac{1}{2}g{t}^{2}$µÃ£ºt=$\sqrt{\frac{2h}{g}}$
ÔòƽÅ×Ô˶¯µÄ³õËÙ¶ÈΪ£ºv=$\frac{x}{t}=x\sqrt{\frac{g}{2h}}$£¬
Èô»úеÄÜÊØºã£¬ÓУº$mgH=\frac{1}{2}m{v}^{2}$
¼´Îª£º$H=\frac{{x}^{2}}{4h}$£¬ÈôÓúáÖá±íʾH£¬Ôò×ÝÖáÓ¦±íʾx2£®
£¨3£©ÓÉ£¨2£©Öª£¬ÈôСÇòϰڹý³ÌÖлúеÄÜÊØºã£¬Ôòh¡¢HºÍxµÄ¹ØÏµÎª£ºH=$\frac{{x}^{2}}{4h}$£®
¹Ê´ð°¸Îª£º£¨1£©ÇòµÄϱßÑØ£»£¨2£©x2£»£¨3£©$\frac{{x}^{2}}{4h}$£®

µãÆÀ ¿¼²éÈçºÎÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£¬ÕÆÎÕÆ½Å×Ô˶¯´¦ÀíµÄ¹æÂÉ£¬Ñ§»áÔ˶¯µÄºÏ³ÉÓë·Ö½â£¬×¢ÒâÇòÏÂÂäµÄ¸ß¶È´ÓÇòϱßÑØ²âÁ¿ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø