题目内容

19.宇宙中两个相距较近的星球可以看成双星,它们只在相互间的万有引力作用下,绕两球心连线上的某一固定点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是(  )
A.双星做圆周运动的动能均减小B.双星做圆周运动的半径均增大
C.双星相互间的万有引力变大D.双星做圆周运动的周期均增大

分析 双星做匀速圆周运动具有相同的角速度,靠相互间的万有引力提供向心力,应用万有引力定律与牛顿第二定律求出双星的轨道半径关系,从而确定出双星的半径如何变化,以及得出双星的角速度和周期的变化.

解答 解:根据万有引力提供向心力,双星做匀速圆周运动具有相同的角速度和周期,$G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{L}_{\;}^{2}}={m}_{1}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{1}^{\;}={m}_{2}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{2}^{\;}$,得${m}_{1}^{\;}{r}_{1}^{\;}={m}_{2}^{\;}{r}_{2}^{\;}$,且${r}_{1}^{\;}+{r}_{2}^{\;}=L$,得${r}_{1}^{\;}=\frac{{m}_{2}^{\;}}{{m}_{1}^{\;}+{m}_{2}^{\;}}L$,${r}_{2}^{\;}=\frac{{m}_{1}^{\;}}{{m}_{1}^{\;}+{m}_{2}^{\;}}L$
A、根据万有引力提供向心力,$G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{L}_{\;}^{2}}={m}_{1}^{\;}\frac{{v}_{1}^{2}}{{r}_{1}^{\;}}$,即${E}_{k1}^{\;}=\frac{1}{2}{m}_{1}^{\;}{v}_{1}^{2}=G\frac{{m}_{1}^{\;}{m}_{2}^{\;}{r}_{1}^{\;}}{2{L}_{\;}^{2}}$=$G\frac{{m}_{1}^{\;}{m}_{2}^{2}}{2L({m}_{1}^{\;}+{m}_{2}^{\;})}$,
同理$G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{L}_{\;}^{2}}={m}_{2}^{\;}\frac{{v}_{2}^{2}}{{r}_{2}^{\;}}$,即${E}_{k2}^{\;}=\frac{1}{2}{m}_{2}^{\;}{v}_{2}^{2}=G\frac{{m}_{1}^{\;}{m}_{2}^{\;}{r}_{2}^{\;}}{2{L}_{\;}^{2}}$=$G\frac{{m}_{1}^{2}{m}_{2}^{\;}}{2L({m}_{1}^{\;}+{m}_{2}^{\;})}$,因为双星距离增大知双星做圆周运动的动能均减小,故A正确
B、根据万有引力提供向心力,$G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{L}_{\;}^{2}}={m}_{1}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{1}^{\;}={m}_{2}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{2}^{\;}$,得${m}_{1}^{\;}{r}_{1}^{\;}={m}_{2}^{\;}{r}_{2}^{\;}$,且${r}_{1}^{\;}+{r}_{2}^{\;}=L$,得${r}_{1}^{\;}=\frac{{m}_{2}^{\;}}{{m}_{1}^{\;}+{m}_{2}^{\;}}L$,${r}_{2}^{\;}=\frac{{m}_{1}^{\;}}{{m}_{1}^{\;}+{m}_{2}^{\;}}L$,由题意知双星间距离增加,双星做圆周运动的半径均增大,故B正确;
C、双星间的距离在缓慢增大,根据万有引力定律$F=G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{r}_{\;}^{2}}$,知万有引力减小,故C错误;
D、根据$G\frac{{m}_{1}^{\;}{m}_{2}^{\;}}{{L}_{\;}^{2}}={m}_{1}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{1}^{\;}={m}_{2}^{\;}\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}{r}_{2}^{\;}$,得${m}_{1}^{\;}=\frac{4{π}_{\;}^{2}{r}_{2}^{\;}{L}_{\;}^{2}}{G{T}_{\;}^{2}}$,${m}_{2}^{\;}=\frac{4{π}_{\;}^{2}{r}_{1}^{\;}{L}_{\;}^{2}}{G{T}_{\;}^{2}}$,${m}_{1}^{\;}+{m}_{2}^{\;}=\frac{4{π}_{\;}^{2}{L}_{\;}^{3}}{G{T}_{\;}^{2}}$,得$T=\sqrt{\frac{4{π}_{\;}^{2}{L}_{\;}^{3}}{G({m}_{1}^{\;}+{m}_{2}^{\;})}}$,因为双星间距离增大,双星做圆周运动的周期均增大,故D正确;
故选:ABD

点评 解决本题的关键知道双星靠相互间的万有引力提供向心力,应用万有引力定律与牛顿第二定律即可正确解题,知道双星的轨道半径比等于质量之反比

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网