ÌâÄ¿ÄÚÈÝ
20£®£¨1£©Ð¡»¬¿éÔÚAB¹ìµÀÉÏËùÊܵϬ¶¯Ä¦²ÁÁ¦µÄ´óС£»
£¨2£©Ç¡ÄÜÑØÔ²¹ìµÀ¾¹ý×î¸ßµãDʱµÄËÙ¶ÈvDµÄ´óС£»
£¨3£©Ð¡»¬¿éµÄ³õËÙ¶Èv0µÄ´óС£®
·ÖÎö £¨1£©ÓÉ»¬¿éµÄÊÜÁ¦Çé¿öÇó³ö»¬¿é¶ÔAB¹ìµÀµÄѹÁ¦£¬ÔÙÓÉf=¦ÌNÇ󻬶¯Ä¦²ÁÁ¦£®
£¨2£©Ð¡»¬¿éÇ¡ºÃÄÜÑØÊúÖ±Ô²¹ìµÀ×öÍêÕûµÄÔ²ÖÜÔ˶¯£¬ÔÚDµã£¬ÓÉÖØÁ¦ºÍµç³¡Á¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóvD£®
£¨3£©¶ÔÕû¸ö¹ý³Ì£¬ÔËÓö¯Äܶ¨ÀíÁÐʽÇó½â³õËÙ¶Èv0µÄ´óС£®
½â´ð ½â£º£¨1£©»¬¿éËùÊܵĵ糡Á¦´óС F=qE=mg£¬·½ÏòÊúÖ±ÏòÏ£¬ÔòС»¬¿éÔÚAB¹ìµÀÉÏËùÊܵϬ¶¯Ä¦²ÁÁ¦µÄ´óС f=¦Ì£¨mg+F£©=2¦Ìmg£»
£¨2£©ÔÚDµã£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
F+mg=m$\frac{{v}_{D}^{2}}{R}$
ÔòµÃ vD=$\sqrt{2gR}$
£¨3£©¶ÔÕû¸ö¹ý³Ì£¬Óɶ¯Äܶ¨ÀíµÃ
-fL-£¨F+mg£©•2R=$\frac{1}{2}m{v}_{D}^{2}$-$\frac{1}{2}m{v}_{0}^{2}$
½âµÃ v0=$\sqrt{10gR+4¦ÌgL}$
´ð£º
£¨1£©Ð¡»¬¿éÔÚAB¹ìµÀÉÏËùÊܵϬ¶¯Ä¦²ÁÁ¦µÄ´óСΪ2¦Ìmg£»
£¨2£©Ç¡ÄÜÑØÔ²¹ìµÀ¾¹ý×î¸ßµãDʱµÄËÙ¶ÈvDµÄ´óСΪ$\sqrt{2gR}$£»
£¨3£©Ð¡»¬¿éµÄ³õËÙ¶Èv0µÄ´óСΪ$\sqrt{10gR+4¦ÌgL}$£®
µãÆÀ ÔÚ±¾ÌâÖÐÎïÌå²»½öÊÜÖØÁ¦µÄ×÷Ó㬻¹Óе糡Á¦£¬ÔÚ½âÌâµÄ¹ý³ÌÖУ¬Ò»¶¨Òª·ÖÎöÇå³þÎïÌåµÄÊÜÁ¦ºÍÔ˶¯¹ý³Ì£¬ÌرðÊÇСÇòÇ¡ºÃ¹ýDµãµÄÌõ¼þ£¬¸ù¾Ý¶¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨ÂÉÁé»îÁÐʽÇó½â£®
| A£® | ÔÚ0¡«1sÄÚ£¬ºÏÁ¦×öÕý¹¦ | B£® | ÔÚ0¡«2sÄÚ£¬ºÏÁ¦×ÜÊÇ×ö¸º¹¦ | ||
| C£® | ÔÚ1s¡«2sÄÚ£¬ºÏÁ¦²»×ö¹¦ | D£® | ÔÚ0¡«3sÄÚ£¬ºÏÁ¦×ÜÊÇ×öÕý¹¦ |
| A£® | ÏßËÙ¶È | B£® | ½ÇËÙ¶È | C£® | ÏòÐļÓËÙ¶È | D£® | תËÙ |