题目内容

4.如图所示,一个人用长为1m的轻绳,系着一个质量为1kg的小球,在竖直平面内做圆周运动,已知圆心O离地面高h=6m.转动中小球在圆周的最底点时小球的速度v=2m/s,g=10m/s2.求:
(1)在最低点时,小球对绳子拉力的大小.
(2)如果小球在最低点时绳子突然断了,小球落地点与抛出点间的水平距离多大?

分析 (1)在最低点,小球受重力和拉力,合力充当向心力,根据牛顿第二定律列式求解拉力;
(2)绳断后,小球做平抛运动,根据平抛运动的分位移公式列式求解.

解答 解:(1)最低点,小球受重力和拉力,合力充当向心力,根据牛顿第二定律,有:
  T-mg=m$\frac{{v}^{2}}{R}$
代入数据解得:T=m(g+$\frac{{v}^{2}}{R}$)=1×(10+$\frac{{2}^{2}}{1}$)N=14N;
(2)绳断后,小球做平抛运动,根据平抛运动的分位移公式,有
 x=vt
 h-R=$\frac{1}{2}$gt2
联立解得 x=v$\sqrt{\frac{2(h-R)}{g}}$=2×$\sqrt{\frac{2×(6-1)}{10}}$m=2m
答:
(1)在最低点时,小球对绳子拉力的大小是14N.
(2)如果小球在最低点时绳子突然断了,小球落地点与抛出点间的水平距离是2m.

点评 本题关键明确小球的运动规律,然后根据牛顿第二定律和平抛运动的规律列式求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网