ÌâÄ¿ÄÚÈÝ
4£®Ë«ÐÇϵͳÖУ¬Á½¿ÅÐÇÔڱ˴ËÒýÁ¦µÄ×÷ÓÃÏ£¬ÈÆÁ¬ÏßÉÏijµã×öÔÈËÙÔ²ÖÜÔ˶¯£®1974ÄêÎïÀíѧ¼ÒԼɪ·ò•Ì©ÀÕºÍÀÈû¶û•ºÕ¶û˹·¢ÏÖÓÉÁ½¸öÖÊÁ¿²»Í¬µÄÐǹ¹³ÉµÄË«ÐÇϵͳ£¬Ã¿ÄêÁ½ÐǼäµÄ¾àÀë¼õÉÙ3.5m£¬ÈôÁ½ÐÇÔ˶¯µÄÖÜÆÚ²»±ä£¬Ôò¸ÃË«ÐÇϵͳÖУ¨¡¡¡¡£©| A£® | Á½ÐÇÏßËÙ¶È´óСʼÖÕÏàµÈ | B£® | Á½ÐǼÓËÙ¶È´óСʼÖÕÏàµÈ | ||
| C£® | ÿÄêÁ½ÐÇ×ÜÖÊÁ¿ÔÚ¼õС | D£® | ÿÄêÁ½ÐÇ×ÜÖÊÁ¿ÔÚÔö¼Ó |
·ÖÎö ÓÉÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬Ë«ÐǵĽÇËÙ¶ÈÏàͬ£¬ÁеÈʽȷ¶¨³ö°ë¾¶ÓëÖÊÁ¿Ö®¼äµÄ¹ØÏµÊ½´Ó¶ø¿ÉÅжÏËÙ¶È£¬¼ÓËÙ¶È£¬ÔÙ·ÖϸÖÊÁ¿µÄ±ä»¯£®
½â´ð ½â£ºË«ÐǵĽÇËÙ¶ÈÏàͬ£¬ÓÉÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£º¶ÔÐÇ1£º$G\frac{{m}_{1}{m}_{2}}{{l}^{2}}$=m1${r}_{1}{¦Ø}^{2}$¡¢Ù
¶ÔÐÇ2£º$G\frac{{m}_{1}{m}_{2}}{{l}^{2}}$=m${r}_{2}{¦Ø}^{2}$¡¢Ú
A¡¢ÓÉ¢Ù¢ÚÖª£º${m}_{1}{r}_{1}{¦Ø}^{2}$=m2${r}_{2}{¦Ø}^{2}$£¬Ôò$\frac{{r}_{1}}{{r}_{2}}=\frac{{m}_{2}}{m1}$£¬ÖÊÁ¿²»Í¬£¬Ôò°ë¾¶²»Í¬£¬ÏßËٶȲ»Í¬£¬ÔòA´íÎó£®
B¡¢ÒýÁ¦ÏàµÈ£¬¶øÖÊÁ¿²»Í¬£¬Ôò¼ÓËٶȲ»Í¬£¬ÔòB´íÎó
C¡¢D¡¢Óɢٿɵãº$G\frac{{m}_{2}}{{l}^{2}}={r}_{1}{¦Ø}^{2}$¡¢Û
ÓÉ¢ÚʽµÃ£º$G\frac{{m}_{1}}{{l}^{2}}={r}_{2}{¦Ø}^{2}$¡¢Ü
Óɢۢܿɵ㺣¨m1+m2£©=$\frac{{l}^{3}{¦Ø}^{2}}{G}$£¬ÖÜÆÚ²»±ä£¬Ôò¦Ø²»±ä£¬l¼õСÔò×ÜÖÊÁ¿¼õС£¬ÔòCÕýÈ·£¬D´íÎó
¹ÊÑ¡£ºC
µãÆÀ Ã÷È·Ë«ÐǵĽÇËÙ¶ÈÏàµÈ£¬½áºÏÍòÓÐÒýÁ¦ÌṩÏòÐÄÁÐʽÇó½â£¬µÃ³öÖÊÁ¿Óë°ë¾¶³É·´±ÈÊÇÇó½âµÄ¹Ø¼ü£®
| µ¯»ÉµÄµ¯Á¦F/N | 0 | 10 | 15 | X |
| µ¯»ÉµÄ³¤¶Èl/cm | 18.0 | 20.0 | 21.0 | 23.0 |
| A£® | Èý¸öÁ£×ÓµÄËÙ¶È´óС¹ØÏµ¿ÉÄÜÊÇv1=v2£¾v3 | |
| B£® | Èý¸öÁ£×ÓµÄËÙ¶È´óС¹ØÏµ¿ÉÄÜÊÇv1£¼v2£¼v3 | |
| C£® | Á£×ӵıȺÉ$\frac{q}{m}=\frac{v_3}{BL}$ | |
| D£® | Á£×ӵıȺÉ$\frac{q}{m}=\frac{¦Ð}{{2B{t_1}}}$ |
| A£® | À©É¢ÏÖÏóÓëζÈÎ޹أ¬²»ÊôÓÚ·Ö×ÓÈÈÔ˶¯ | |
| B£® | ¾Æ¾«ºÍË®»ìºÏºóÌå»ý±äС£¬ËµÃ÷·Ö×Ó¼äÓпÕ϶ | |
| C£® | ²¼ÀÊÔ˶¯ÊÇÓÉÐü¸¡ÔÚÒºÌåÖеÄ΢Á£Ö®¼äµÄÏ໥ÅöײÒýÆðµÄ | |
| D£® | Ö»ÒªÄÜÔö¼ÓÆøÌå·Ö×ÓÈÈÔ˶¯µÄ¾çÁҳ̶ȣ¬ÆøÌåµÄζȾͿÉÒÔÉý¸ß |
| A£® | ¶¯Á¿´óСһ¶¨ÏàµÈ | B£® | ¶¯ÄÜÒ»¶¨ÏàµÈ | ||
| C£® | ÖÊÁ¿Ò»¶¨ÏàµÈ | D£® | ËÙ¶È´óСһ¶¨ÏàµÈ |
| A£® | ÎÛË®µÄÁ÷Á¿Q=$\frac{abU}{B}$ | |
| B£® | ½ðÊô°åMµÄµçÊÆ²»Ò»¶¨¸ßÓÚ½ðÊô°åNµÄµçÊÆ | |
| C£® | µçѹUÓëÎÛË®ÖÐÀë×ÓŨ¶ÈÎÞ¹Ø | |
| D£® | ×ó¡¢ÓÒÁ½²à¹ÜµÀµÄѹǿ²î¡÷p=$\frac{ka{U}^{2}}{b{B}^{2}{c}^{3}}$ |