ÌâÄ¿ÄÚÈÝ
18£®| A£® | ÎÀÐÇ¡°G1¡±ºÍ¡°G3¡±µÄ¼ÓËÙ¶È´óСÏàµÈÇÒΪ$\frac{R}{r}$g | |
| B£® | Èç¹ûµ÷¶¯¡°¸ß·ÖÒ»ºÅ¡±ÎÀÐÇ¿ìËÙµ½´ïBλÖõÄÏ·½£¬±ØÐë¶ÔÆä¼ÓËÙ | |
| C£® | ÎÀÐÇ¡°G1¡±ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèµÄʱ¼äΪ$\frac{¦Ðr}{3R}\sqrt{\frac{r}{g}}$ | |
| D£® | Èô¡°¸ß·ÖÒ»ºÅ¡±ËùÔڸ߶ȴ¦ÓÉÏ¡±¡ÆøÌ壬ÔòÔËÐÐÒ»¶Îʱ¼äºó£¬»úеÄÜ»áÔö´ó |
·ÖÎö A¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦$G\frac{Mm}{{r}^{2}}$=ma£¬ÒÔ¼°»Æ½ð´ú»»Ê½GM=gR2£®ÇóÎÀÐǵļÓËÙ¶È´óС£®
B¡¢¡°¸ß·ÖÒ»ºÅ¡±ÎÀÐÇËÙ¶ÈÔö´ó£¬ÍòÓÐÒýÁ¦²»¹»ÌṩÏòÐÄÁ¦£¬×öÀëÐÄÔ˶¯£¬¹ìµÀ°ë¾¶±ä´ó£¬ËٶȱäС£¬Â·³Ì±ä³¤£¬Ô˶¯Ê±¼ä±ä³¤£®
C¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦Çó³öÎÀÐǵĽÇËÙ¶È£¬È»ºóͨ¹ýת¹ýµÄ½Ç¶ÈÇó³öʱ¼ä£®
D¡¢¡°¸ß·ÖÒ»ºÅ¡±Êǵ͹ìµÀÎÀÐÇ£¬ÆäËùÔڸ߶ÈÓÐÏ¡±¡ÆøÌ壬Ҫ¿Ë·þ×èÁ¦×ö¹¦£¬»úеÄܼõС
½â´ð ½â£ºA¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦$\frac{GMm}{{r}^{2}}$=ma£¬µÃa=$\frac{GM}{{r}^{2}}$£®¶øGM=gR2£®ËùÒÔÎÀÐǵļÓËÙ¶Èa=$\frac{g{R}^{2}}{{r}^{2}}$£®¹ÊA´íÎó£®
B¡¢¡°¸ß·ÖÒ»ºÅ¡±ÎÀÐǼÓËÙ£¬½«×öÀëÐÄÔ˶¯£¬¹ìµÀ°ë¾¶±ä´ó£¬ËٶȱäС£¬Â·³Ì±ä³¤£¬Ô˶¯Ê±¼ä±ä³¤£¬¹ÊÈç¹ûµ÷¶¯¡°¸ß·ÖÒ»ºÅ¡±ÎÀÐÇ¿ìËÙµ½´ïBλÖõÄÏ·½£¬±ØÐë¶ÔÆä¼õËÙ£¬¹ÊB´íÎó£®
C¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬µÃ$¦Ø=\sqrt{\frac{GM}{{r}^{3}}}$=$\sqrt{\frac{g{R}^{2}}{{r}^{3}}}$£®ËùÒÔÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèµÄʱ¼ät=$\frac{\frac{¦Ð}{3}}{¦Ø}$=$\frac{¦Ðr}{3R}\sqrt{\frac{r}{g}}$£®¹ÊCÕýÈ·£®
D¡¢¡°¸ß·ÖÒ»ºÅ¡±Êǵ͹ìµÀÎÀÐÇ£¬ÆäËùÔڸ߶ÈÓÐÏ¡±¡ÆøÌ壬¿Ë·þ×èÁ¦×ö¹¦£¬»úеÄܼõС£®¹ÊD´íÎó£®
¹ÊÑ¡£ºC
µãÆÀ ¸ÃÌ⿼²éÈËÔìÎÀÐǵÄÎÊÌ⣬½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦$G\frac{Mm}{{r}^{2}}$=ma»Æ½ð´ú»»Ê½GM=gR2£®
| A£® | 1£º4 | B£® | 2£º3 | C£® | 4£º9 | D£® | 8£º9 |
| A£® | ÏßȦÖиÐÓ¦µçÁ÷µÄÓÐЧֵΪ100$\sqrt{2}$A | |
| B£® | ½»Á÷µçѹ±íµÄʾÊýΪ800V | |
| C£® | ÏßȦÖиÐÓ¦µç¶¯ÊƵÄ˲ʱֵ±í´ïʽe=1000$\sqrt{2}$sin100¦Ðt | |
| D£® | ÏßȦÔÈËÙÐýת0.005sµÄ¹ý³ÌÖУ¬Í¨¹ýµç×èRµÄµçºÉÁ¿Îª$\frac{{\sqrt{2}}}{¦Ð}$C |
| A£® | E=$\frac{F}{q}$ | B£® | C=$\frac{Q}{U}$ | C£® | E=$\frac{U}{d}$ | D£® | E=k$\frac{Q}{{R}^{2}}$ |
| A£® | 1¡«8sÄÚ | B£® | 15¡«16sÄÚ | C£® | 16¡«23sÄÚ | D£® | 23¡«24sÄÚ |
| A£® | FL | B£® | FLsin¦Á | C£® | FLcos¦Á | D£® | FLtan¦Á |