ÌâÄ¿ÄÚÈÝ
14£®ÏðÆ¤½îÒ²Ïñµ¯»ÉÒ»Ñù£¬ÔÚµ¯ÐÔÏÞ¶ÈÄÚ£¬É쳤Á¿xÓ뵯Á¦F³ÉÕý±È£¬¼´F=kx£¬kµÄÖµÓëÏðÆ¤½îδÊܵ½ÀÁ¦Ê±µÄ³¤¶ÈL¡¢ºá½ØÃæ»ýSÓйأ¬ÀíÂÛÓëʵ¼ù¶¼±íÃ÷k=$\frac{YS}{L}$£¬ÆäÖÐYÊÇÒ»¸öÓɲÄÁϾö¶¨µÄ³£Êý£¬²ÄÁÏÁ¦Ñ§ÖгÆÖ®ÎªÑîÊÏÄ£Á¿£®¢ÙÓÐÒ»¶Îºá½ØÃæÊÇÔ²ÐεÄÏðÆ¤½î£¬Ó¦ÓÃÈçͼ¼×ËùʾµÄʵÑé×°ÖÿÉÒÔ²âÁ¿³öËüµÄÑîÊÏÄ£Á¿YµÄÖµ£®Ï±íΪÏðÆ¤½îÊܵ½µÄÀÁ¦FÓëÉ쳤Á¿xµÄʵÑé¼Ç¼£¬ÇëÔÚͼÒÒÖÐ×÷³öFxͼÏó£®
| ÀÁ¦F/N | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 |
| É쳤Á¿x/cm | 1.60 | 3.20 | 4.80 | 6.40 | 8.00 |
¢ÛijͬѧÔÚ¼ÒÖÐÓÃÈý¸ùÏàͬµÄÏðÆ¤½î£¨×ñѺú¿Ë¶¨ÂÉ£©À´Ì½¾¿ºÏÁ¦µÄ·½·¨£¬Èçͼ±ûËùʾ£¬Èý¸ùÏðÆ¤½îÔÚOµãÏ໥Á¬½Ó£¬À³¤ºóÈý¸ö¶ËµãÓÃͼ¶¤¹Ì¶¨ÔÚA¡¢B¡¢CÈýµã£®ÔÚʵÑéÖУ¬¿ÉÒÔͨ¹ý¿Ì¶È³ß²âÁ¿ÏðÆ¤½îµÄ³¤¶ÈÀ´µÃµ½ÏðÆ¤½îµÄÀÁ¦´óС£¬²¢Í¨¹ýOA¡¢OB¡¢OCµÄ·½ÏòÈ·¶¨Èý¸öÀÁ¦µÄ·½Ïò£¬´Ó¶øÌ½¾¿ÇóÆäÖÐÈÎÒâÁ½¸öÀÁ¦µÄºÏÁ¦µÄ·½·¨£®ÔÚʵÑé¹ý³ÌÖУ¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇD
A£®Ö»ÐèÒª²âÁ¿ÏðÆ¤½îµÄ³¤¶È£¬²»ÐèÒª²â³öÏðÆ¤½îµÄÔ³¤
B£®Îª¼õСÎó²î£¬Ó¦Ñ¡Ôñ¾¢¶ÈϵÊý¾¡Á¿´óµÄÏðÆ¤½î
C£®ÒÔOB¡¢OCΪÁ½ÁÚ±ß×÷ƽÐÐËıßÐΣ¬Æä¶Ô½ÇÏß±ØÓëOAÔÚÒ»ÌõÖ±ÏßÉÏÇÒ³¤¶ÈÓëOAÏàµÈ
D£®¶à´ÎʵÑéÖм´Ê¹Oµã²»¹Ì¶¨£¬Ò²¿ÉÒÔ̽¾¿ÇóºÏÁ¦µÄ·½·¨£®
·ÖÎö £¨1£©¸ù¾ÝËù¸øÊý¾Ý£¬ÀûÓÃÃèµã·¨¼´¿É»³öͼÏó£®
£¨2£©¸ù¾Ýºú¿Ë¶¨ÂÉ¿ÉÖª£¬Í¼ÏóµÄбÂÊ´óСµÈÓÚ¾¢¶ÈϵÊý´óС
£¨3£©ÓÉÌâÒâ¿ÉÖª¸ÃʵÑéÀûÓÃÁ˹²µãÁ¦µÄƽºâÀ´ÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò£¬¸ÃʵÑéÖÐÐèÒª¼Ç¼¸÷Á¦µÄ´óСºÍ·½Ïò£¬¸÷Á¦µÄ´óС¿ÉÒÔͨ¹ýÏðÆ¤½îµÄÉ쳤Á¿À´±íʾ£®
½â´ð ½â£º¢Ù¸ù¾ÝÌâÖбí¸ñµÄÊý¾Ý£¬×ö³öÆäFxͼÏ󣬸ù¾ÝÃèµã·¨µÃ³ö¶ÔÓ¦µÄͼÏóÈçͼËùʾ£»![]()
¢ÚÆäбÂʾÍÊÇkֵΪk=$\frac{F}{x}=\frac{25}{0.08}N/m$=3.1¡Á102 N/m£¬
¢ÛA¡¢Óɺú¿Ë¶¨ÂÉF=kx¿ÉµÃxΪÐαäÁ¿£¬¼´Ñ¹Ëõ»òÉ쳤Á¿£¬ËùÒÔA´í£»
B¡¢ÎªÁ˼õСÎó²î£¬ÏðÆ¤½îµÄÉ쳤Á¿Ó¦¸Ã´óЩ£¬¹ÊӦѡÔñ¾¢¶ÈϵÊýÉÔСµÄÏðÆ¤½î£¬¹ÊB´íÎó£»
C¡¢ÓÉÓÚÏðÆ¤½îµÄµ¯Á¦ÓëËüµÄ³¤¶È²»³ÉÕý±È£¬ËùÒÔOB¡¢OCµ¯Á¦µÄºÏÁ¦·½ÏòÓëÒÔOB¡¢OCΪÁ½ÁÚ±ß×öƽÐÐËıßÐεĶԽÇÏß²»Öغϣ¬¹ÊC´íÎó£»
D¡¢²»Í¬µÄOµãÒÀÈ»Âú×ãÈÎÒâÁ½¸öÏðÆ¤½îµ¯Á¦µÄºÏÁ¦ÓëµÚÈý¸öÏðÆ¤½îµ¯Á¦µÈ´ó·´ÏòµÄÌØµã£¬ËùÒÔ¼´Ê¹Oµã²»¹Ì¶¨£¬Ò²¿ÉÒÔ̽¾¿ÇóºÏÁ¦µÄ·½·¨£¬¹ÊDÕýÈ·£®
¹Ê´ð°¸Îª£º¢ÙÈçͼËùʾ¢Ú3.1¡Á102¢ÛD
µãÆÀ £¨1£©±¾Ìâ½áºÏͼÏó¿¼²éÁ˺ú¿Ë¶¨ÂɵĻù´¡ÖªÊ¶£¬ÊÇÒ»µÀ¿¼²é»ù´¡ÖªÊ¶µÄºÃÌ⣮ҪÇóѧÉú¾ßÓÐÒ»¶¨µÄ¸ù¾ÝʵÑéÊý¾Ý»ñÈ¡ÐÅÏ¢µÄÄÜÁ¦£®
£¨2£©½â¾öʵÑéÎÊÌâµÄ¹Ø¼üÊÇÃ÷ȷʵÑéÔÀí£¬Ö»ÓÐÃ÷È·ÁËʵÑéÔÀí²ÅÄÜÖªµÀʵÑéÒÇÆ÷¡¢ÊµÑé²½ÖèµÈ£®
| A£® | ¼ÓËÙ¶ÈÒ»¶¨Îª2 m/s2 | B£® | ǰ5 sÄÚÎ»ÒÆ²»¿ÉÄÜÊÇ25 m | ||
| C£® | ǰ10 sÄÚÎ»ÒÆÒ»¶¨Îª100 m | D£® | ǰ10 sÄÚÎ»ÒÆ²»Ò»¶¨Îª100 m |
| A£® | СÇò¾¹ý¸÷µãËÙ¶ÈÖµÖ®±ÈΪva£ºvb£ºvc£ºvd=1£º$\sqrt{2}$£º$\sqrt{3}$£º2 | |
| B£® | СÇò´Óaµãµ½´ï¸÷µãËùÓÃʱ¼äÖ®±ÈΪtb£ºtc£ºtd=1£º$\sqrt{2}$£º$\sqrt{3}$ | |
| C£® | È«¹ý³ÌµÄƽ¾ùËÙ¶Èv=vb | |
| D£® | È«¹ý³ÌµÄƽ¾ùËÙ¶Èv=$\frac{{v}_{d}}{2}$ |
| A£® | ¼ÓËÙ¶È´óµÄÎïÌ壬ͨ¹ýµÄÎ»ÒÆÒ»¶¨´ó | |
| B£® | ³õËÙ¶È´óµÄÎïÌ壬ͨ¹ýµÄÎ»ÒÆÒ»¶¨´ó | |
| C£® | Ä©ËÙ¶È´óµÄÎïÌ壬ͨ¹ýµÄÎ»ÒÆÒ»¶¨´ó | |
| D£® | ƽ¾ùËÙ¶È´óµÄÎïÌ壬ͨ¹ýµÄÎ»ÒÆÒ»¶¨´ó |
| A£® | µ±Ïß¿ò½Óµç¶¯ÊÆÎªE1µÄµçԴʱËùÊܰ²ÅàÁ¦µÄ´óСΪF1 | |
| B£® | µ±Ïß¿ò½Óµç¶¯ÊÆÎªE2µÄµçԴʱÁ¦Ãô´«¸ÐÆ÷ÏÔʾµÄÀÁ¦´óСΪÏß¿òËùÊܰ²ÅàÁ¦´óСÓëÖØÁ¦´óС֮²î | |
| C£® | ´ý²â´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪ$\frac{£¨{F}_{1}-{F}_{2}£©R}{£¨{E}_{2}-{E}_{1}^{\;}£©L}$ | |
| D£® | ´ý²â´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪ$\frac{£¨{F}_{1}-{F}_{2}£©R}{£¨{E}_{1}-{E}_{2}£©L}$ |