ÌâÄ¿ÄÚÈÝ

13£®£¨ÊµÑé°à×ö£©ÈçͼËùʾ£¬ÔÚyÖáµÄÓÒ·½ÓÐÒ»´Å¸ÐӦǿ¶ÈΪBµÄ·½Ïò´¹Ö±Ö½ÃæÏòÍâµÄÔÈÇ¿´Å³¡£¬ÔÚxÖáµÄÏ·½ÓÐÒ»³¡Ç¿ÎªEµÄ·½ÏòƽÐÐxÖáÏòÓÒµÄÔÈÇ¿µç³¡£®ÓÐһǦ°å·ÅÖÃÔÚyÖá´¦£¬ÇÒÓëÖ½Ãæ´¹Ö±£®ÏÖÓÐÒ»ÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄÁ£×Ó£¨²»¼ÆÖØÁ¦£©Óɾ²Ö¹¾­¹ý¼ÓËÙµçѹΪUµÄµç³¡¼ÓËÙ£¬È»ºóÒÔ´¹Ö±ÓÚǦ°åµÄ·½Ïò´ÓA´¦ÑØÖ±Ïß´©¹ýǦ°å£¬¶øºó´ÓxÖáÉϵÄD´¦ÒÔÓëxÖáÕýÏò¼Ð½ÇΪ60¡ãµÄ·½Ïò½øÈëµç³¡ºÍ´Å³¡µþ¼ÓµÄÇøÓò£¬×îºóµ½´ïyÖáÉϵÄCµã£®ÒÑÖªOD³¤Îªl£¬Çó£º
£¨1£©Á£×Ó¾­¹ý¼ÓËٵ糡ºóµÄËÙ¶È
£¨2£©Á£×Ó¾­¹ýǦ°åʱËðʧÁ˶àÉÙ¶¯ÄÜ£¿
£¨3£©Á£×Óµ½´ïCµãʱµÄËٶȶà´ó£¿

·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖмÓËÙ£¬Óɶ¯Äܶ¨Àí¿ÉÒÔÇó³öËÙ¶È£®
£¨2£©Á£×Ó¸Õµ½´ïǦ°åËÙ¶ÈÊÇÓɼÓËٵ糡¼ÓËÙ»ñµÃµÄ£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó½â£®´©¹ýǦ°åºóÁ£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£®¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÇó³ö¹ì¼£°ë¾¶£¬´Ó¶ø¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Çó³öÁ£×Ó´©¹ýǦ°åºóµÄËÙ¶È£»
£¨3£©Óɶ¯Äܶ¨Àí¿ÉÒÔÇó³öÁ£×ÓµÄËÙ¶È£®

½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖмÓËÙ£¬Óɶ¯Äܶ¨ÀíµÃ£º
qU=$\frac{1}{2}$mv02£¬½âµÃ£ºv0=$\sqrt{\frac{2qU}{m}}$£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqvB=m$\frac{{v}^{2}}{R}$£¬½âµÃ£ºv=$\frac{qBR}{m}$£¬
Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£¬Óɼ¸ºÎ֪ʶµÃ£ºsin60¡ã=$\frac{l}{R}$£¬
½âµÃ£ºR=$\frac{2l}{\sqrt{3}}$£¬v=$\frac{2qBl}{\sqrt{3}m}$£¬
ÂåÂ××ÈÁ¦²»×ö¹¦£¬Á£×Ó´©¹ýǦ°åºóµÄ¶¯ÄÜ£ºEK=$\frac{1}{2}$mv2=$\frac{2{q}^{2}{B}^{2}{l}^{2}}{3m}$£¬
Á£×Ó´©¹ýǦ°åËðʧµÄ¶¯ÄÜ£º¡÷EK=EK0-EK=qU-$\frac{2{q}^{2}{B}^{2}{l}^{2}}{3m}$£»
£¨3£©¶¯Dµ½CÖ»Óе糡Á¦¶ÔÁ£×Ó×ö¹¦£¬Óɶ¯Äܶ¨ÀíµÃ£º
-qEl=$\frac{1}{2}$mvC2-$\frac{1}{2}$mv2£¬½âµÃ£ºvC=$\sqrt{\frac{4{q}^{2}{B}^{2}{l}^{2}}{3{m}^{2}-\frac{2qEl}{m}}}$£»
´ð£º£¨1£©Á£×Ó¾­¹ý¼ÓËٵ糡ºóµÄËÙ¶ÈΪ$\sqrt{\frac{2qU}{m}}$£»
£¨2£©Á£×Ó¾­¹ýǦ°åʱËðʧµÄ¶¯ÄÜΪqU-$\frac{2{q}^{2}{B}^{2}{l}^{2}}{3m}$£»
£¨3£©Á£×Óµ½´ïCµãʱµÄËÙ¶ÈΪ£º$\sqrt{\frac{4{q}^{2}{B}^{2}{l}^{2}}{3{m}^{2}-\frac{2qEl}{m}}}$£®

µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڵ糡Óë´Å³¡µÄ×ÛºÏÓ¦Ó㮸ù¾Ý¶¯Äܶ¨ÀíÇó½â¼ÓËÙ»ñµÃµÄËÙ¶È£®¸ù¾Ý¼¸ºÎ֪ʶÇó³ö´Å³¡Öй켣°ë¾¶µÈµÈ¶¼Êdz£Óõķ½·¨£®ÌرðҪעÒâ´øµçÁ£×ÓÔڴų¡ÖÐÂåÂ××ÈÁ¦Ê¼ÖÕ²»×ö¹¦£¬¶øÔڵ糡Öе糡Á¦×ö¹¦Óë·¾¶Î޹أ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø