ÌâÄ¿ÄÚÈÝ
12£®Ò»Á¾Ö´Çڵľ¯³µÍ£ÔÚ¹«Â·±ß£¬µ±¾¯Ô±·¢ÏÖ´ÓËûÅÔ±ßÒÔ10m/sµÄËÙ¶ÈÔÈËÙÐÐÊ»µÄ»õ³µÑÏÖØ³¬ÔØÊ±£¬¾ö¶¨Ç°È¥×·¸Ï£¬¾¹ý5.5sºó¾¯³µ·¢¶¯ÆðÀ´£¬²¢ÒÔ2.5m/s2µÄ¼ÓËÙ¶È×öÔȼÓËÙÔ˶¯£¬²¢¾¡¿ì×·ÉÏ»õ³µ£¬µ«¾¯³µµÄËÙ¶È×î´óÊÇ25m/s£®ÎÊ£º£¨1£©¾¯³µÔÚ×·¸Ï»õ³µµÄ¹ý³ÌÖУ¬Á½³µÖ®¼äµÄ×î´ó¾àÀëÊǶàÉÙ£¿
£¨2£©¾¯³µ·¢¶¯ºóÖÁÉÙ¾¹ý¶à³¤Ê±¼ä²ÅÄÜ×·ÉÏ»õ³µ£¿
·ÖÎö £¨1£©ÔÚÁ½³µËÙ¶ÈÏàµÈǰ£¬»õ³µµÄËÙ¶È´óÓÚ¾¯³µ£¬Á½³µµÄ¾àÀëÔ½À´Ô½´ó£¬ËÙ¶ÈÏàµÈÖ®ºó£¬»õ³µµÄËÙ¶ÈСÓÚ¾¯³µ£¬Á½³µµÄ¾àÀëÔ½À´Ô½Ð¡£¬ËùÒÔÁ½³µËÙ¶ÈÏàµÈʱ£¬¾àÀë×î´ó£®¸ù¾ÝËÙ¶ÈÏàµÈÇó³öʱ¼ä£¬ÔÙ¸ù¾ÝÔ˶¯Ñ§µÄÎ»ÒÆ¹«Ê½Çó³öÏà¾àµÄ×î´ó¾àÀ룮
£¨2£©ÏÈÅжϵ±¾¯³µËÙ¶È´ïµ½×î´óËÙ¶Èʱ£¬ÓÐû׷ÉÏ£®Èô×·ÉÏ£¬Ôò¸ù¾ÝÎ»ÒÆ¹ØÏµ£¬Çó³öÔ˶¯µÄʱ¼ä£®ÈôûÓÐ×·ÉÏ£¬Çó³öÁ½³µÏà¾àµÄ¾àÀ룬֮ºó¾¯³µÒÔ×î´óËÙ¶È×·¼°£¬¸ù¾ÝÎ»ÒÆ¹ØÏµ£¬Çó³ö×·¼°Ê±¼ä£¨×¢Òâ´Ëʱ׷¼°Ê±¼äµÈÓÚ¼ÓËٽ׶εÄʱ¼äºÍÔÈËÙ×·¼°µÄʱ¼äÖ®ºÍ£©£®
½â´ð ½â£º£¨l£©¾¯³µÔÚ×·¸Ï»õ³µµÄ¹ý³ÌÖУ¬µ±Á½³µËÙ¶ÈÏàµÈʱ£¬ËüÃǵľàÀë×î´ó£®É辯³µ·¢¶¯ºó¾¹ýt1ʱ¼äÁ½³µµÄËÙ¶ÈÏàµÈ£¬ÔòÓУº
${t}_{1}^{\;}$=$\frac{{v}_{0}^{\;}}{a}$=$\frac{10}{2.5}s=4s$
s»õ=v0£¨t1+t0£©=10¡Á£¨4+5.5£©m=95m
s¾¯=$\frac{1}{2}a{t}_{1}^{2}=\frac{1}{2}¡Á2.5¡Á{4}_{\;}^{2}=20m$
ËùÒÔÁ½³µ¼äµÄ×î´ó¾àÀëΪ£º¡÷s=s»õ-s¾¯=75m
£¨2£©µ±¾¯³µ¸Õ´ïµ½×î´óËÙ¶Èʱ£¬Ô˶¯Ê±¼äΪ£º
${t}_{2}^{\;}=\frac{{v}_{m}^{\;}}{a}=\frac{25}{2.5}=10s$
s'»õ=v0£¨t2+t0£©=10¡Á£¨10+5.5£©m=155m
s'¾¯=$\frac{1}{2}a{t}_{2}^{2}=\frac{1}{2}¡Á2.5¡Á1{0}_{\;}^{2}=125m$
ÒòΪs'»õ£¾s'¾¯£¬¹Ê´Ëʱ¾¯³µÉÐδ¸ÏÉÏ»õ³µ
¾¯³µ¸Õ´ïµ½×î´óËÙ¶ÈʱÁ½³µ¾àÀë¡÷s¡ä=s'»õ-s'¾¯=30m£¬
¾¯³µ´ïµ½×î´óËٶȺó×öÔÈËÙÔ˶¯£¬ÉèÔÙ¾¹ý¡÷tʱ¼ä×·¸ÏÉÏ»õ³µ£®ÔòÓУº
$¡÷t=\frac{¡÷s¡ä}{{v}_{m}^{\;}-{v}_{0}^{\;}}=2s$
ËùÒÔ¾¯³µ·¢¶¯ºóÒª¾¹ýt=t2+¡÷t=12s²ÅÄÜ×·ÉÏ»õ³µ£®
´ð£º£¨1£©¾¯³µÔÚ×·¸Ï»õ³µµÄ¹ý³ÌÖУ¬Á½³µÖ®¼äµÄ×î´ó¾àÀëÊÇ75m
£¨2£©¾¯³µ·¢¶¯ºóÖÁÉÙ¾¹ý12sʱ¼ä²ÅÄÜ×·ÉÏ»õ³µ
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀËÙ¶ÈСÕß¼ÓËÙ×·ËÙ¶È´óÕߣ¬Á½ÕßËÙ¶ÈÏàµÈʱ£¬¾àÀë×î´ó£®ÒÔ¼°ÖªµÀ¾¯³µ×·ÉÏ»õ³µÊ±£¬Á½³µµÄÎ»ÒÆÏàµÈ£®
| A£® | ¼×ͼÖÐѧÉú´ÓÆðÁ¢µ½Õ¾Ö±µÄ¹ý³ÌÖУ¬ÌåÖØ¼ÆµÄʾÊýÏȼõСºóÔö´ó | |
| B£® | ¶¡Í¼ÖÐÔ˶¯Ô±ÍÆ¿ª±ùºøºó£¬±ùºøÔÚ±ùÃæ×öÔÈËÙÖ±ÏßÔ˶¯ | |
| C£® | ±ûͼÖк£ëàµÄÉíÌå³ÊÁ÷ÏßÐÍ£¬ÊÇΪÁËÔö´óº£ëàµÄ¸¡Á¦ | |
| D£® | ÒÒͼÖÐÈü³µµÄÖÊÁ¿½ÏС£¬È´°²×°×ÅÇ£ÒýÁ¦ºÜ´óµÄ·¢¶¯»ú£¬Ä¿µÄÊÇ»ñµÃºÜ´óµÄ¼ÓËÙ¶È |
| A£® | $\frac{1}{2}$gt0¡Üv0£¼gt0£¬h=$\frac{1}{2}$gt${\;}_{0}^{2}$£¨$\frac{{v}_{0}-g{t}_{0}}{{v}_{0}-\frac{1}{2}g{t}_{0}}$£©2 | |
| B£® | v0¡Ùgt0£¬h=$\frac{1}{2}$gt${\;}_{0}^{2}$£¨$\frac{{v}_{0}-\frac{1}{2}g{t}_{0}}{{v}_{0}-g{t}_{0}}$£©2 | |
| C£® | $\frac{1}{2}$gt0¡Üv0£¼gt0£¬h=$\frac{1}{2}$gt${\;}_{0}^{2}$£¨$\frac{{v}_{0}-\frac{1}{2}g{t}_{0}}{{v}_{0}-g{t}_{0}}$£©2 | |
| D£® | v0¡Ù$\frac{1}{2}$gt0£¬h=$\frac{1}{2}$gt${\;}_{0}^{2}$£¨$\frac{{v}_{0}-g{t}_{0}}{{v}_{0}-\frac{1}{2}g{t}_{0}}$£©2 |
| A£® | ´óС | B£® | ·Ç¾²µçÁ¦×ö¹¦ÐÎʽ | ||
| C£® | ½ÓÈëºÎÖÖµç· |
| A£® | ·ç¶ÔÎïÌå×ö¹¦ÎªÁã | B£® | ·ç¶ÔÎïÌå×ö¸º¹¦ | ||
| C£® | ÎïÌå»úеÄܼõÉÙ$\frac{m{g}^{2}{t}^{2}}{2}$ | D£® | ·ç¶ÔÎïÌåµÄ³åÁ¿´óС´óÓÚ2mv0 |