ÌâÄ¿ÄÚÈÝ

18£®¡°æÏ¶ðÈýºÅ¡±Ì½²âÆ÷ÔÚÎ÷²ýÎÀÐÇ·¢ÉäÖÐÐijɹ¦·¢É䣬Я´ø¡°ÓñÍúš±ÔÂÇò³µÊµÏÖÔÂÇòÈí׎ºÍÔÂÃæÑ²ÊÓ¿±²ì£¬²¢¿ªÕ¹Ô±íÐÎòÓëµØÖʹ¹Ôìµ÷²éµÈ¿ÆÑ§Ì½²â£®¡°ÓñÍúš±ÔÚµØÇò±íÃæµÄÖØÁ¦ÎªG1£¬ÔÚÔÂÇò±íÃæµÄÖØÁ¦ÎªG2£»µØÇòÓëÔÂÇò¾ùÊÓΪÇòÌ壬Æä°ë¾¶·Ö±ðΪR1¡¢R2£»µØÇò±íÃæÖØÁ¦¼ÓËÙ¶ÈΪg£®Ôò£¨¡¡¡¡£©
A£®ÔÂÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{{G}_{1}g}{{G}_{2}}$
B£®ÔÂÇòÓëµØÇòµÄÖÊÁ¿Ö®±ÈΪ$\frac{{G}_{2}{{R}_{2}}^{2}}{{G}_{1}{{R}_{1}}^{2}}$
C£®ÔÂÇòÎÀÐÇÓëµØÇòÎÀÐÇ·Ö±ðÈÆÔÂÇò±íÃæÓëµØÇò±íÃæÔËÐеÄËÙÂÊÖ®±ÈΪ $\sqrt{\frac{{G}_{2}{R}_{2}}{{G}_{1}{R}_{1}}}$
D£®¡°æÏ¶ðÈýºÅ¡±»·ÈÆÔÂÇò±íÃæ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚΪ2¦Ð$\sqrt{\frac{{G}_{2}{R}_{2}}{{G}_{1}g}}$

·ÖÎö ̽²âÆ÷ÔÚÔÂÇòºÍµØÇòÉÏÖÊÁ¿²»±ä£¬Çó³öÔÚµØÇòÖÊÁ¿£¬¼´ÄÜÇó³öÔÚÔÂÇòµÄÖØÁ¦¼ÓËÙ¶È£¬¸ù¾ÝÖØÁ¦µÈÓÚÍòÓÐÒýÁ¦ÇóÖÊÁ¿£¬¸ù¾Ý¹«Ê½$v=\sqrt{\frac{GM}{R}}$=$\sqrt{gR}$ÇóµÚÒ»ÓîÖæËÙ¶È£¬¸ù¾ÝÖÜÆÚ¹«Ê½$T=\sqrt{\frac{4{¦Ð}_{\;}^{2}{r}_{\;}^{3}}{GM}}$ÇóÖÜÆÚ

½â´ð ½â£ºA¡¢¡°ÓñÍúš±µÄÖÊÁ¿$m=\frac{{G}_{1}^{\;}}{g}$£¬ÔÂÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶È${g}_{2}^{\;}=\frac{{G}_{2}^{\;}}{m}=\frac{{G}_{2}^{\;}g}{{G}_{1}^{\;}}$£¬¹ÊA´íÎó£®
B¡¢¸ù¾Ý$mg=G\frac{Mm}{{R}_{\;}^{2}}$
µÃ$M=\frac{g{R}_{\;}^{2}}{G}$
$\frac{{M}_{ÔÂ}^{\;}}{{M}_{µØ}^{\;}}=\frac{{g}_{ÔÂ}^{\;}}{{g}_{µØ}^{\;}}\frac{{R}_{ÔÂ}^{2}}{{R}_{µØ}^{2}}=\frac{{G}_{2}^{\;}}{{G}_{1}^{\;}}\frac{{R}_{2}^{2}}{{R}_{1}^{2}}$£¬¹ÊBÕýÈ·£®
C¡¢¸ù¾Ý$v=\sqrt{\frac{GM}{R}}$=$\sqrt{gR}$$\frac{{v}_{ÔÂ}^{\;}}{{v}_{µØ}^{\;}}=\frac{\sqrt{{g}_{ÔÂ}^{\;}{R}_{ÔÂ}^{\;}}}{\sqrt{{g}_{µØ}^{\;}{R}_{µØ}^{\;}}}=\sqrt{\frac{{G}_{2}^{\;}}{{G}_{1}^{\;}}\frac{{R}_{2}^{\;}}{{R}_{1}^{\;}}}$£¬¹ÊCÕýÈ·£®
D¡¢¸ù¾ÝÖÜÆÚ¹«Ê½$T=\sqrt{\frac{4{¦Ð}_{\;}^{2}{R}_{ÔÂ}^{3}}{G{M}_{ÔÂ}^{\;}}}$£¬¸ù¾Ý$m{g}_{ÔÂ}^{\;}=G\frac{{M}_{ÔÂ}^{\;}m}{{R}_{ÔÂ}^{2}}$µÃ$G{M}_{ÔÂ}^{\;}={g}_{ÔÂ}^{\;}{R}_{ÔÂ}^{2}$
ÁªÁ¢µÃ$T=\sqrt{\frac{4{¦Ð}_{\;}^{2}{R}_{2}^{3}}{{g}_{ÔÂ}^{\;}{R}_{2}^{2}}}=2¦Ð\sqrt{\frac{{G}_{1}^{\;}{R}_{2}^{\;}}{{G}_{2}^{\;}g}}$£¬¹ÊD´íÎó
¹ÊÑ¡£ºBC

µãÆÀ ±¾Ì⿼²éÁËÍòÓÐÒýÁ¦¶¨ÂÉÔÚÌìÎÄѧÉϵÄÓ¦Ó㬽âÌâµÄ»ù±¾¹æÂÉÊÇÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÔÚÈÎÒ»ÐÇÇò±íÃæÖØÁ¦µÈÓÚÍòÓÐÒýÁ¦£¬¼ÇסµÚÒ»ÓîÖæËٶȹ«Ê½£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø