ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÉèÒ»¸öÖÊÁ¿Îªm0¡¢µçºÉÁ¿Îªq0µÄÕýÀë×ÓÒÔËÙ¶Èv0£¨v0ºÜ´ó£¬DÔ¶´óÓÚL£¬²»¼Æ´øµçÁ£×ÓÔÚ°å¼äÔ˶¯Ê±Æ«ÀëO¡äOµÄ¾àÀë£©ÑØO¡äOµÄ·½Ïò´ÓO¡äµãÉäÈ룬°å¼ä²»¼Óµç³¡ºÍ´Å³¡Ê±£¬Àë×Ó´òÔÚÆÁÉÏOµã£®
¢ÙÈôÔÚÁ½¼«°å¼ä¼ÓÒ»¸öÑØ+y ·½Ïò³¡Ç¿ÎªEµÄÔÈÇ¿µç³¡£¬ÇóÀë×ÓÉäµ½ÆÁÉÏʱƫÀëOµãµÄ¾àÀëy1£»
¢ÚÈôÔÚÁ½¼«°å¼ä¼ÓÒ»ÑØ+x·½Ïò´Å¸ÐӦǿ¶ÈΪB¡äµÄÔÈÇ¿´Å³¡£¬ÇóÀë×ÓÉäµ½ÆÁÉÏʱƫÀëOµãµÄ¾àÀëy2£»£¨ÔÚ°å¼äÔ˶¯Ê±O¡äO·½ÏòµÄ·ÖËÙ¶È×ÜÊÇÔ¶´óÓÚx·½ÏòºÍy·½ÏòµÄ·ÖËÙ¶È£»µ±¦ÈºÜСʱ£¬tan¦È=sin¦È£¬cos¦È=1£©
£¨2£©ÔÚÉÏÊö×°ÖÃÖУ¬±£ÁôµÚ£¨1£©ÎÊÖеĵ糡£¬ÔÙÔÚ°å¼ä¼ÓÑØ-y·½ÏòµÄÔÈÇ¿´Å³¡£®ÏÖÓеçºÉÁ¿ÏàͬµÄÁ½ÖÖÕýÀë×Ó×é³ÉµÄÀë×ÓÁ÷£¬ÈÔ´ÓO¡äµãÑØO¡äO·½ÏòÉäÈ루ÈëÉäËٶȸ÷Óв»Í¬£¬µ«¶¼ºÜ´ó£¬ÇÒÔÚ°å¼äÔ˶¯Ê±O¡äO·½ÏòµÄ·ÖËÙ¶È×ÜÊÇÔ¶´óÓÚx·½ÏòºÍy·½ÏòµÄ·ÖËÙ¶È£©£¬ÆÁÉϳöÏÖÁ½ÌõÁÁÏߣ®ÔÚÁ½ÏßÉÏÈ¡y×ø±êÏàͬµÄÁ½¸ö¹âµã£¬¶ÔÓ¦µÄx×ø±ê·Ö±ðΪ4.32mmºÍ4.00mm£¬ÆäÖÐx ×ø±ê´óµÄ¹âµãÊÇ̼12Àë×Ó»÷ÖÐÆÁ²úÉúµÄ£¬ÁíÒ»¹âµãÊÇδ֪Àë×Ó²úÉú£®ÊÔÒÀÕÕÒÔÉÏʵÑé½á¹û¼ÆËãδ֪Àë×ÓµÄÖÊÁ¿Êý£¨È¡Á½Î»ÓÐЧÊý×Ö£©£®
·ÖÎö ´øµçÀë×ÓÔÚ+y·½Ïòµç³¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬³öµç³¡ºó×öÔÈËÙÖ±ÏßÔ˶¯£® ÓÉÓÚ²»¼ÆÀë×ÓÔڵ糡ÖÐÆ«ÀëµÄ¾àÀ룬ÔòÀûÓÃÀë×ÓÔÚoo¡ä·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬¿ÉÇóÀë×ÓÔڵ糡ÖеÄʱ¼ä£¬´Ó¶øÈ·¶¨Àë×Ó³öµç³¡y·½ÏòµÄËÙ¶È£®Óɼ«°åÓҶ˵½ÆÁµÄ¾àÀëD¿ÉÇó³öÀë×ÓÉäµ½ÆÁÉÏÆ«ÀëOµãµÄ¾àÀ룮Àë×ÓÔڴų¡ÖÐÊܵ½ÂåÂ××ÈÁ¦±¾²»×ö¹¦£¬µ«ÌâÄ¿Ìõ¼þµÄÏÞÖÆ£¬ÓÉÓÚÂåÂ××ÈÁ¦×÷ÓÃʹÀë×ÓÔÚx·½Ïò×öÔȼÓËÙÖ±ÏßÔ˶¯£®ËùÒÔÀûÓÃÔ˶¯µÄ·Ö½â¿É½«Ô˶¯·Ö½â³Éx¡¢y·½Ïò£¬ÔÙ½áºÏÌâÖеÄÒÑÖªÁ¿¿ÉÇó³ö½á¹û£®
½â´ð ½â£º£¨1£©Àë×ÓÔڵ糡ÖÐÊܵ½µÄµç³¡Á¦ Fy=q0E¡¢Ù
Àë×Ó»ñµÃµÄ¼ÓËÙ¶È ay=$\frac{{F}_{y}}{{m}_{0}}$¡¢Ú
Àë×ÓÔÚ°å¼äÔ˶¯µÄʱ¼ä t0=$\frac{L}{{v}_{0}}$¡¢Û
µ½´ï¼«°åÓÒ±ßԵʱ£¬Àë×ÓÔÚ+y·½ÏòµÄ·ÖËÙ¶È vy=ayt0¡¢Ü
Àë×Ó´Ó°åÓҶ˵½´ïÆÁÉÏËùÐèʱ¼ä t¡ä0=$\frac{D}{{v}_{0}}$¡¢Ý
Àë×ÓÉäµ½ÆÁÉÏʱƫÀëOµãµÄ¾àÀë y1=$\frac{1}{2}$ay ${t}_{0}^{2}$+vyt'0
ÓÉÉÏÊö¸÷ʽ£¬µÃ y1=$\frac{{q}_{0}EL£¨L+2D£©}{2m{v}_{0}^{2}}$¡¢Þ
ÉèÀë×ÓµçºÉÁ¿Îªq£¬ÖÊÁ¿Îªm£¬ÈëÉäʱËÙ¶ÈΪv£¬´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB£¬´Å³¡¶ÔÀë×ÓµÄÂåÂ××ÈÁ¦Fx=qvB¡¢ß
ÒÑÖªÀë×ÓµÄÈëÉäËٶȶ¼ºÜ´ó£¬Òò¶øÁ£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼äÉõ¶Ì£®
Ëù¾¹ýµÄÔ²»¡ÓëÔ²ÖÜÏà±ÈÉõС£¬ÇÒÔÚ°åÖÐÔ˶¯Ê±£¬OO'·ÖËÙ¶È×ÜÊÇÔ¶´óÓÚÔÚx·½ÏòºÍy·½ÏòµÄ·ÖËÙ¶È£¬ÂåÂ××ÈÁ¦±ä»¯Éõ΢£¬¹Ê¿É×÷ºãÁ¦´¦Àí£¬ÂåÂ××ÈÁ¦²úÉúµÄ¼ÓËÙ¶Èax=$\frac{qvB}{m}$¡¢à
axÊÇÀë×ÓÔÚx·½ÏòµÄ¼ÓËÙ¶È£¬Àë×ÓÔÚx·½ÏòµÄÔ˶¯¿ÉÊÓΪ³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬µ½´ï¼«°åÓÒ¶Ëʱ£¬Àë×ÓÔÚx·½ÏòµÄ·ÖËÙ¶Èvx=axt=$\frac{qvB}{m}$£¨$\frac{L}{v}$£©=$\frac{qBL}{m}$¡¢á
Àë×ӷɳö¼«°åµ½´ïÆÁʱ£¬ÔÚx·½ÏòÉÏÆ«ÀëOµãµÄ¾àÀëx=vxt¡ä=$\frac{qBL}{m}$£¨$\frac{D}{v}$£©=$\frac{qBLD}{mv}$¡¢â
µ±Àë×ӵijõËÙ¶ÈΪÈÎÒâֵʱ£¬Àë×Óµ½´ïÆÁÉÏʱµÄλÖÃÔÚy·½ÏòÉÏÆ«ÀëOµãµÄ¾àÀëΪy£¬
¿¼Âǵ½¢Þʽ£¬µÃy2=$\frac{qELD}{m{v}^{2}}$¡£¨11£©
£¨2£©Óɢ⡢£¨11£©Á½Ê½µÃx2=$\frac{k}{m}$y¡£¨12£©
ÆäÖÐk=$\frac{q{B}^{2}LD}{E}$ÉÏʽ±íÃ÷£¬kÊÇÓëÀë×Ó½øÈë°å¼ä³õËÙ¶ÈÎ޹صֵ͍£¬¶ÔÁ½ÖÖÀë×Ó¾ùÏàͬ£®
ÓÉÌâÉèÌõ¼þÖª£¬x×ø±ê4.32mmµÄ¹âµã¶ÔÓ¦µÄÊÇ̼12Àë×Ó£¬ÆäÖÊÁ¿Îªm1=12u£¬
x×ø±ê4.00mmµÄ¹âµã¶ÔÓ¦µÄÊÇδ֪Àë×Ó£®
ÉèÆäÖÊÁ¿Îªm2£¬ÓÉ£¨12£©Ê½´úÈëÊý¾Ý¿ÉµÃm2¡Ö14u¡£¨13£©
¹Ê¸Ãδ֪Àë×ÓµÄÖÊÁ¿ÊýΪ14£»
´ð£º£¨1£©¢ÙÈôÔÚÁ½¼«°å¼ä¼ÓÒ»¸öÑØ+y ·½Ïò³¡Ç¿ÎªEµÄÔÈÇ¿µç³¡£¬ÇóÀë×ÓÉäµ½ÆÁÉÏʱƫÀëOµãµÄ¾àÀë$\frac{{q}_{0}EL£¨L+2D£©}{2m{v}_{0}^{2}}$£»
¢ÚÈôÔÚÁ½¼«°å¼ä¼ÓÒ»ÑØ+x·½Ïò´Å¸ÐӦǿ¶ÈΪB¡äµÄÔÈÇ¿´Å³¡£¬ÇóÀë×ÓÉäµ½ÆÁÉÏʱƫÀëOµãµÄ¾àÀë$\frac{qELD}{m{v}^{2}}$£»
£¨2£©Î´ÖªÀë×ÓµÄÖÊÁ¿Êý14£®
µãÆÀ ¿¼²é´øµçÁ£×ÓÔڵ糡¡¢´Å³¡ÖеÄÔ˶¯£¬µ«´Å³¡µÄÔ˶¯³öÏÖÁËÂåÂ××ÈÁ¦×ö¹¦µÄÇé¿ö£®Í¬Ê±»¹ÌåÏÖÁËÔ˶¯µÄºÏ³ÉÓë·Ö½â£®
| A£® | $\sqrt{3}$v0£¬$\sqrt{13}$v0£¬$\frac{\sqrt{3}}{2}{v}_{0}$ | B£® | $\sqrt{3}$v0£¬$\sqrt{13}$v0£¬$\frac{\sqrt{3}}{3}$v0 | C£® | $\sqrt{3}$v0£¬2$\sqrt{3}$v0£¬$\frac{\sqrt{3}}{2}{v}_{0}$ | D£® | $\sqrt{3}$v0£¬v0£¬$\frac{\sqrt{3}}{2}{v}_{0}$ |
| A£® | ÈÔ±£³Ö¾²Ö¹ | B£® | ÑØ×ó²àÐ±Ãæ¼ÓËÙÏ»¬ | ||
| C£® | ÑØÓÒ²àÐ±Ãæ¼ÓËÙÏ»¬ | D£® | ÎÞ·¨È·¶¨ÈçºÎÔ˶¯ |
| A£® | ÎÀÐÇÈÆµØÇò×öÔÈËÙÔ²ÖÜÔ˶¯µÄ×îСËٶȳÆÎªµÚÒ»ÓîÖæËÙ¶È£¬´óСΪ7.9km/s | |
| B£® | Èç¹û×÷ÓÃÁ¦¶ÔÎïÌå×öÕý¹¦£¬Ôò·´×÷ÓÃÁ¦Ò»¶¨×ö¸º¹¦ | |
| C£® | µç³¡ÖÐijµãµç³¡Ç¿¶ÈµÄ´óСÓë·ÅÈë¸ÃµãµÄÊÔ̽µçºÉµÄµçºÉÁ¿ÓÐ¹Ø | |
| D£® | ÖØÁ¦ÊǵØÃ渽½üµÄÎïÌåÓÉÓÚÊܵ½µØÇòÎüÒý¶ø²úÉúµÄ£¬µ«ÖØÁ¦²¢²»ÊÇÍòÓÐÒýÁ¦ |
| ʵÑé´ÎÊý | 1 | 2 | 3 | 4 | 5 |
| R£¨¦¸£© | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 |
| U£¨V£© | 1.00 | 1.19 | 1.27 | 1.31 | 1.35 |
| U/R£¨A£© | 0.50 | 0.30 | 0.21 | 0.16 | 0.13 |
£¨2£©¸ù¾Ý±íÖÐÌṩµÄÊý¾Ý£¬ÈôÀûÓÃͼÏóÈ·¶¨µç³ØµÄµç¶¯ÊƺÍÄÚ×裬ÔòÓ¦×÷AͼÏó£»
£¨A£©U-$\frac{U}{R}$ £¨B£©R-U £¨C£©R-$\frac{U}{R}$ £¨D£©$\frac{1}{R}$-U
£¨3£©¸ù¾Ý£¨2£©ÖÐÄãÑ¡ÔñµÄͼÏó£¬µç³ØµÄµç¶¯ÊÆÊǸÃͼÏóµÄyÖáµÄ½Ø¾à£¬µç³ØµÄÄÚ×èÊǸÃͼÏóµÄͼÏßµÄбÂÊ£®