ÌâÄ¿ÄÚÈÝ
5£®Èçͼ¼×Ëùʾ£¬A¡¢B¡¢C¡¢DΪ¹Ì¶¨ÓÚÊúÖ±Æ½ÃæÄڵıպϾøÔµ¹ìµÀ£¬»¡AB¶Î¡¢»¡CD¶Î¾ùΪ°ë¾¶R=1.6mµÄ°ëÔ²£¬BC¡¢AD¶Îˮƽ£¬AD=BC=8m£®B¡¢CÖ®¼äµÄÇøÓò´æÔÚˮƽÏòÓÒµÄÓнçÔÈÇ¿µç³¡£¬³¡Ç¿E=5¡Á105V/m£¬ÆäÓàÇøÓòûÓе糡£®ÖÊÁ¿Îªm=4¡Á10-3kg¡¢´øµçÁ¿q=+1¡Á10-8CµÄС»·Ì×ÔÚ¹ìµÀÉÏ£®Ð¡»·Óë¹ìµÀAD¶ÎµÄ¶¯Ä¦²ÁÒòÊýΪCaC2=0.125£¬Óë¹ìµÀÆäÓಿ·ÖµÄĦ²ÁºöÂÔ²»¼Æ£®ÏÖʹС»·ÔÚDµã»ñµÃÑØ¹ìµÀÏò×óµÄ³õËÙ¶Èv0=4m/s£¬ÇÒÔÚÑØÖ±Ïß¹ìµÀDA¶ÎÔ˶¯¹ý³ÌÖÐʼÖÕÊܵ½·½ÏòÊúÖ±ÏòÉÏ¡¢´óÐ¡ËæËٶȱ仯µÄÁ¦F£¨±ä»¯¹ØÏµÈçͼÒÒËùʾ£©×÷Óã¬Ð¡»·µÚÒ»´Î½øÈë°ëÔ²¹ìµÀABʱÔÚAµã¶Ô°ëÔ²¹ìµÀ¸ÕºÃÎÞѹÁ¦£®²»¼ÆÐ¡»·´óС£¬gÈ¡10m/s2£®Ç󣺣¨1£©Ð¡»·µÚÒ»´ÎÔ˶¯µ½AʱµÄËÙ¶È´óС£»
£¨2£©Ð¡»·µÚÒ»´Î»Øµ½DµãʱËÙ¶È´óС£»
£¨3£©ÈôС»·¾¹ý¶à´ÎÑ»·Ô˶¯ÄÜ´ïµ½Îȶ¨Ô˶¯×´Ì¬£¬Ôòµ½´ïDµãʱµÄËÙ¶ÈÖÁÉÙ¶à´ó£¿
·ÖÎö £¨1£©Ð¡»·Ã¿´Îµ½´ïÔ²»¡ÉϵÄAµãʱ£¬¶ÔÔ²¹ìµÀ¸ÕºÃ¾ùÎÞѹÁ¦£¬ÖªÔÚAµã¿¿ÖØÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öAµãµÄËÙ¶È£®
£¨2£©Óɶ¯Äܶ¨Àí¿ÉÇóµÃµÚÒ»´Îµ½´ïDµãµÄËÙ¶È£»
£¨3£©¶ÔС»·µÄÔ˶¯¹ý³Ì½øÐзÖÎö£¬¸ù¾Ý¶¯Äܶ¨Àí¼°ÄÜÁ¿µÄת»¯¹ØÏµ¿ÉÇóµÃDµãµÄ×îСËÙ¶È£®
½â´ð ½â£º£¨1£©½øÈë°ëÔ²¹ìµÀABʱС»µ½öÊÜÖØÁ¦£¬ÔÚAµãÓÉÏòÐÄÁ¦¹«Ê½µÃ£º$mg=m\frac{{v_{A1}^2}}{R}$
µÃ£º${v_{A1}}=\sqrt{gR}=\sqrt{10¡Á1.6}m/s=4m/s$
£¨2£©Ð¡Îï¿é´ÓD³ö·¢£¬µÚÒ»´Î»Øµ½DµÄ¹ý³Ì£¬Óɶ¯Äܶ¨ÀíµÃ£º$\frac{1}{2}mv_{D1}^2-\frac{1}{2}mv_0^2=qEL$
$v_{D1}^{\;}=\sqrt{v_0^2+\frac{2qEL}{m}}=\sqrt{{4^2}+\frac{{2¡Á1¡Á{{10}^{-8}}¡Á5¡Á{{10}^5}¡Á8}}{{4¡Á{{10}^{-3}}}}}m/s=6m/s$
£¨3£©³õʼλÖÃDµãʱ£¬ÈôËù¼ÓÁ¦F£¾mg£¬ÔòС»·ÊÜĦ²ÁÁ¦¶ø¼õËÙ£¬Í¬Ê±F¼õС£¬
µ±F=mgʱÔÈËÙ£¬µ«ËÙ¶ÈÒ»¶¨Ð¡ÓÚ4m/s£»ÈôF£¼mg£¬ÔòС»·ÊÜĦ²ÁÁ¦¶ø¼õËÙ£¬Í¬Ê±FÔ½À´Ô½Ð¡£¬Ä¦²ÁÁ¦Ô½À´Ô½´ó£¬Ð¡»·¼ÌÐø¼õËÙÖ±ÖÁ¾²Ö¹£¬²»»áµ½´ïAµãʱËÙ¶ÈΪ4m/s£¬×ÛÉÏ¿É֪С»·µÚÒ»´Î´ÓDµ½A×öÔÈËÙÔ˶¯£®
ÓÉͼÏóÖª£ºF=kv=mg
$k=\frac{mg}{v}=\frac{{4¡Á{{10}^{-3}}¡Á10}}{4}Ns/m=0.01Ns/m$
ËùÒÔFm=kvm=2mg=0.08N
Ôò¿ÉÖª»·Óë¸ËµÄĦ²ÁÁ¦f¡Ü¦Ì|Fm-mg|=¦Ìmg=qE
Îȶ¨Ñ»·Ê±£¬Ã¿Ò»¸öÖÜÆÚÖÐËðºÄµÄÄÜÁ¿Ó¦µÈÓÚ²¹³äµÄÄÜÁ¿
${W_Ëð}={W_{Ħ×î{´ó_{\;}}}}¡Ü{f_m}S¡Ü¦Ì£¨{F_m}-mg£©S¡Ü0.04N¡Á\frac{1}{8}¡Á8m¡Ü0.04J$
¶ø${W_²¹}={W_µç}=qEs=1¡Á{10^{-8}}¡Á5¡Á{10^5}¡Á8m=0.04J$
ËùÒÔÎȶ¨Ñ»·Ô˶¯Ê±Ð¡»·ÔÚAD¶ÎÔ˶¯Ê±ËÙ¶ÈÒ»¶¨Òª´óÓÚµÈÓÚ8m/s
¼´µ½´ïAµãµÄËٶȲ»Ð¡ÓÚ8m/s
Îȶ¨Ñ»·Ô˶¯Ê±Ð¡»·´ÓAµ½DµÄ¹ý³Ì£¬Óɶ¯Äܶ¨ÀíµÃ£º$\frac{1}{2}mv_D^2-\frac{1}{2}mv_A^2=qEL$
$v_D^{\;}=\sqrt{v_A^2+\frac{2qEL}{m}}=\sqrt{{8^2}+\frac{{2¡Á1¡Á{{10}^{-8}}¡Á5¡Á{{10}^5}¡Á8}}{{4¡Á{{10}^{-3}}}}}m/s=2\sqrt{21}m/s$
´ïµ½Îȶ¨Ô˶¯×´Ì¬Ê±£¬Ð¡»·µ½´ïDµãʱËÙ¶ÈÓ¦²»Ð¡ÓÚ$2\sqrt{21}m/s$
´ð£º£¨1£©Ð¡»·Í¨¹ýAµãʱµÄËÙ¶ÈΪ4m/s£»
£¨2£©Ð¡»·µÚÒ»´Î»Øµ½DµãʱËÙ¶È´óСΪ6m/s£»
£¨3£©ÈôС»·¾¹ý¶à´ÎÑ»·Ô˶¯ÄÜ´ïµ½Îȶ¨Ô˶¯×´Ì¬£¬Ôòµ½´ïDµãʱµÄËÙ¶ÈÖÁÉÙ$2\sqrt{21}m/s$
µãÆÀ ±¾Ì⿼²éÁ˶¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨ÂɵÄ×ÛºÏÔËÓ㬹ؼüÀíÇåС»·µÄÔ˶¯¹ý³Ì£¬Ñ¡ÔñºÏÊʵĹæÂɽøÐÐÇó½â£¬ÄѶȽϴó£®
| A£® | ÔÈËÙÔ˶¯ | B£® | ÏÈÔÈËÙÔ˶¯ºó¼ÓËÙÔ˶¯ | ||
| C£® | ÏȼõËÙÔ˶¯ºó¼ÓËÙÔ˶¯ | D£® | ÏȼÓËÙÔ˶¯ºó¼õËÙÔ˶¯ |
| A£® | YÁ£×ÓΪ¦ÂÁ£×Ó | |
| B£® | ${\;}_{53}^{131}$IµÄ°ëË¥ÆÚ´óÔ¼ÊÇ8Ì죬ÈôÈ¡4¸öµâÔ×Ӻˣ¬¾16Ìì¾ÍÒ»¶¨Ê£ÏÂ1¸öµâÔ×ÓºËÁË | |
| C£® | Éú³ÉµÄ${\;}_{54}^{131}$Xe´¦ÓÚ¼¤·¢Ì¬£¬·ÅÉä¦ÃÉäÏߣ®¦ÃÉäÏߵĴ©Í¸ÄÜÁ¦×îÇ¿£¬µçÀëÄÜÁ¦Ò²×îÇ¿ | |
| D£® | ${\;}_{53}^{131}$IÖÐÓÐ53¸öÖÊ×ÓºÍ131¸öºË×Ó |
| A£® | ÈôA¡¢BΪÒìÖÖµçºÉ£¬BÇòÒ»¶¨×öÔÈËÙÔ²ÖÜÔ˶¯ | |
| B£® | ÈôA¡¢BΪÒìÖÖµçºÉ£¬BÇò¿ÉÄÜ×ö¼ÓËٶȺÍËٶȾù±äСµÄÇúÏßÔ˶¯ | |
| C£® | ÈôA¡¢BΪͬÖÖµçºÉ£¬BÇò¿ÉÄÜ×ö¼ÓËٶȺÍËٶȾù±äСµÄÇúÏßÔ˶¯ | |
| D£® | ÈôA¡¢BΪͬÖÖµçºÉ£¬BÇò¿ÉÄÜ×ö¼ÓËٶȺÍËٶȾù±ä´óµÄÇúÏßÔ˶¯ |