ÌâÄ¿ÄÚÈÝ
6£®£¨1£©Îï¿é¼ÓËٶȵĴóС£»
£¨2£©Ê¹ÀÁ¦FÈ¡µ½×îСֵ£¬FÓëÐ±ÃæµÄ¼Ð½Ç¦ÂÒÔ¼°FµÄ×îСֵ£»
£¨3£©Ê¹ÀÁ¦FÈ¡µ½×îСֵ£¬FÔÚ2sÄ򵀮½¾ù¹¦ÂÊ£®
·ÖÎö £¨1£©¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆÊ±¼ä¹«Ê½Çó³öÎï¿éµÄ¼ÓËÙ¶È£®
£¨2£©ÈôÀÁ¦FÓëÐ±Ãæ³É¦Â½Ç£¬¸ù¾Ý´¹Ö±ÓÚÐ±ÃæºÍƽÐÐÓÚÐ±ÃæÉϵÄÊÜÁ¦£¬Áгö·½³ÌÇó³öFµÄ±í´ïʽ£¬Áé»îÔËÓÃÈý½Çº¯Êý¹«Ê½Çó³ö×îСֵ
£¨3£©ÇóµÃAB¼äÔ˶¯µÄƽ¾ùËÙ¶È£¬¸ù¾ÝP=Fvcos¦ÂÇóµÃƽ¾ù¹¦ÂÊ£®
½â´ð ½â£º£¨1£©´ÓAµ½BÓÐÎ»ÒÆÊ±¼ä¹«Ê½$s={v}_{0}t+\frac{1}{2}a{t}^{2}$½âµÃa=2m/s2
£¨2£©ÉèÀÁ¦ÓëÐ±ÃæµÄ¼Ð½ÇΪ¦Â£¬¶ÔÎïÌåÊÜÁ¦·ÖÎö¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɿɵÃ
Fcos¦Â-mgsin¦Á-¦Ì£¨mgcos¦Á-Fsin¦Â£©=ma£¬
½âµÃ$F=\frac{ma+mgsin¦Á+¦Ìmgcos¦Á}{cos¦Â+¦Ìsin¦Â}$£¬
µ±$¦Â=arctan£¨\frac{3}{4}£©=3{7^0}$ʱ£¬FÈ¡×îСֵΪF=11.2N£»
£¨3£©ÔÚ´ÓAÔ˶¯´ðBµÄ¹ý³ÌÖÐÆ½¾ùËÙ¶ÈΪ$\overline v=\frac{s}{t}=5m/s$£¬
ÀÁ¦µÄƽ¾ù¹¦ÂÊΪ${P_F}=F•\overline v•cos¦Â=44.8W$£®
´ð£º£¨1£©Îï¿é¼ÓËٶȵĴóСΪ2m/s2£»
£¨2£©Ê¹ÀÁ¦FÈ¡µ½×îСֵ£¬FÓëÐ±ÃæµÄ¼Ð½Ç¦ÂΪ37¡ã£¬FµÄ×îСֵΪ11.2N£»
£¨3£©Ê¹ÀÁ¦FÈ¡µ½×îСֵ£¬FÔÚ2sÄ򵀮½¾ù¹¦ÂÊΪ44.8W£®
µãÆÀ ±¾ÌâÊÇÒÑÖªÔ˶¯Çé¿öÈ·¶¨ÊÜÁ¦Çé¿ö£¬¹Ø¼üÏȸù¾ÝÔ˶¯Ñ§¹«Ê½Çó½â¼ÓËÙ¶È£¬È»ºó¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÌÖÂÛ
| A£® | ËùÊܺÏÍâÁ¦·½ÏòÓëËÙ¶È·½Ïò²»ÔÚÒ»ÌõÖ±ÏßÉÏ | |
| B£® | ¼ÓËÙ¶È·½ÏòÓëËÙ¶È·½Ïò²»ÔÚÒ»ÌõÖ±ÏßÉÏ | |
| C£® | ËÙ¶È´óС²»¶Ï¸Ä±ä | |
| D£® | ¼ÓËÙ¶È´óС²»¶Ï¸Ä±ä |
| A£® | ¦ÁÁ£×ÓÓëÓ«¹âÆÁ·´Ó¦ºó²úÉúÖÊ×Ó | |
| B£® | ×èµ²¦ÁÁ£×Ó | |
| C£® | ͳ¼ÆºË·´Ó¦¹ý³Ì²úÉúÈ«²¿ÖÊ×ÓµÄÊýÁ¿ | |
| D£® | ÖÊ×Óͨ¹ýÓ«¹âÆÁÒýÆðÉÁ¹â |
| A£® | ÖʵãµÄÕñ¶¯ÖÜÆÚΪ2s | |
| B£® | 2sÄ©ÖʵãµÄËÙ¶ÈΪÁã | |
| C£® | 0¡«1sÄÚÖʵã×öÔȼõËÙÔ˶¯ | |
| D£® | ÔÚ1.5sºÍ2.5sÄ©£¬ÖʵãµÄËÙ¶ÈÏàͬ£¬¼ÓËٶȲ»Í¬ |
| A£® | Á£×ÓÔÚcd¶Î×ö¼ÓËÙÔ˶¯ | B£® | Á£×ÓÔÚcµãʱµçÊÆÄÜ×î´ó | ||
| C£® | Á£×ÓÔÚaµãÓëeµãµÄËÙÂÊÏàµÈ | D£® | K¡¢L¡¢MÈýµãµÄµçÊÆÂú×ã¦ÕK£¼¦ÕL£¼¦ÕM |
| A£® | Ô×ÓÖ»ÄÜ´¦ÓÚһϵÁв»Á¬ÐøµÄ״̬ÖУ¬Ã¿¸ö״̬¶¼¶ÔÓ¦Ò»¶¨µÄÄÜÁ¿ | |
| B£® | Ô×ÓÖУ¬ËäÈ»ºËÍâµç×Ó²»¶Ï×ö¼ÓËÙÔ˶¯£¬µ«Ö»ÒªÄÜÁ¿×´Ì¬²»±ä£¬¾Í²»»áÏòÍâ·øÉäÄÜÁ¿ | |
| C£® | Ô×Ó´ÓÒ»ÖÖ¶¨Ì¬Ô¾Ç¨µ½ÁíÒ»ÖÖ¶¨Ì¬Ê±£¬Ò»¶¨Òª·øÉäÒ»¶¨ÆµÂʵĹâ×Ó | |
| D£® | Ô×ÓµÄÿһ¸öÄÜÁ¿×´Ì¬¶¼¶ÔÓ¦Ò»¸öµç×Ó¹ìµÀ£¬²¢ÇÒÕâЩ¹ìµÀÊDz»Á¬ÐøµÄ |
| A£® | ¸ù¾Ý¹«Ê½V=¦Ø•r£¬¿ÉÖªÎÀÐǵÄÏßËٶȽ«Ôö´óµ½ÔÀ´µÄ2±¶ | |
| B£® | ¸ù¾Ý¹«Ê½F=m$\frac{{V}^{2}}{r}$£¬¿ÉÖªÎÀÐÇËùÐèµÄÏòÐÄÁ¦ÎªÔÀ´µÄ$\frac{1}{2}$ | |
| C£® | ¸ù¾Ý¹«Ê½F=G$\frac{{m}_{1}{m}_{2}}{{r}^{2}}$£¬¿ÉÖªµØÇòÌṩµÄÏòÐÄÁ¦ÎªÔÀ´µÄ$\frac{1}{4}$ | |
| D£® | ¸ù¾ÝB¡¢CÖеĹ«Ê½£¬¿ÉÖªÎÀÐǵÄÏßËÙ¶ÈΪÔÀ´µÄ$\frac{\sqrt{2}}{2}$ |