ÌâÄ¿ÄÚÈÝ
1£®ÓÐÈËÉèÏëÔÚÒ£¿ØÍæ¾ßÆû³µÉϰ²×°µç´Å¼õËÙ×°Öã¬Èçͼ¼×ËùʾÊÇÖ±¾¶Îªd=8cmµÄÒ£¿Ø³µµÄ½ðÊô³µÂÖ£¬4¸ö³µÂÖËùÔÚÇøÓò°²×°ÓдŸÐӦǿ¶ÈB=2TµÄÔÈÇ¿´Å³¡×°Öã¬Óõ¼ÏßÖ±½Ó°Ñ³µÂÖÖÐÐÄOÓë³µÂÖ±ßÔµÁ¬½Ó£¬¸Ãµ¼Ïß²»Ëæ³µÂÖÔ˶¯£¬³µÂֵĵÈЧµç×èΪr=0.05¦¸£¬µÈЧµç·ÈçͼÒÒËùʾ£¬Èç¹ûÒ£¿ØÍæ¾ßÆû³µÕýÒÔv=10m/sµÄËÙ¶ÈÐÐÊ»£¬²Ù¿ØÕ߹رն¯Á¦²¢Í¨¹ýÒ£¿ØÆô¶¯µç´Å¼õËÙ×°Öã¬×îºóÆû³µ¾t=10sͣϣ¬Íæ¾ßÆû³µµÄÖÊÁ¿Îªm=0.5kg£¬Ô˶¯Ê±Êܵ½µÄĦ²Á×èÁ¦fºãΪ0.5N£¬¼õËÙ¹ý³ÌµÄv-tͼÏóÈ粢ͼËùʾ£º£¨1£©ÇóÆô¶¯¼õËÙ×°ÖÃ˲¼äÿ¸ö³µÂÖ²úÉúµÄµç¶¯ÊÆ£¬²¢Ö¸Ã÷¸ÐÓ¦µçÁ÷µÄ·½Ïò£»
£¨2£©ÇëÔÚµÈЧµç·ÉϼÆËãÆô¶¯¼õËÙ×°ÖÃ˲¼äÿ¸ö³µÂÖÊܵ½µÄ°²ÅàÁ¦²¢´Óv-tͼ·ÖÎö¹ÀËãµç´Å¼õËÙµÄЧ¹û£®
·ÖÎö £¨1£©¸ù¾Ý¸ÐÓ¦µç¶¯Êƹ«Ê½£ºE=BLvÇó½â£»
£¨2£©¸ù¾Ý°²ÅàÁ¦¹«Ê½¼ÆËã°²ÅàÁ¦µÄ´óС£¬Í¨¹ý¹¦ÄܹØÏµ¼ÆËã¼õËÙʱ°²ÅàÁ¦µÄÏûºÄµÄÄÜÁ¿£®
½â´ð ½â£º£¨1£©Æû³µÕýÒÔv=10m/sµÄËÙ¶ÈÐÐÊ»£¬¼´ÏßËÙ¶ÈΪ10m/s£¬Ôò°ë¾¶Çиî´Å¸ÐÏߵĵÈЧËÙ¶ÈΪ£º$\overline{v}=\frac{1}{2}v=5m/s$£¬
ÓÉ£ºE=Brv=B$\frac{d}{2}\overline{v}$=2¡Á0.04¡Á5=0.4V£¬ÓÐÓÒÊÖ¶¨Ôò¿ÉÅж¨µçÁ÷·½ÏòÓɳµÂÖ±ßÔµÖ¸ÏòÔ²ÐÄ£®
£¨2£©¸ÐÓ¦µçÁ÷£ºI=$\frac{E}{r}$=$\frac{0.4}{0.05}=8A$
µÈЧµç·ÉϽðÊô·øÌõÊÕµ½µÄ°²ÅàÁ¦Îª£º$F=BIL=BI\frac{d}{2}$=2¡Á8¡Á0.04=0.64N
ÓÉv-tͼÏó¿ÉÖª£¬Ã¿¸öС¸ñ´ú±íµÄÎ»ÒÆÎª1m£¬ÔòÔÚ10sÄÚͣϹ²×ßÁË´óÔ¼23¸ñ£¬¼´Î»ÒÆÎª23m£¬
ÉèÕâ¸ö¹ý³Ì°²ÅàÁ¦×ö¹¦ÎªW£¬Óɶ¯Äܶ¨Àí¿ÉµÃ£ºW-fs=0-$\frac{1}{2}m{v}^{2}$£¬½âµÃ£ºW=fs-$\frac{1}{2}m{v}^{2}$=0.5¡Á23-$\frac{1}{2}¡Á0.5¡Á1{0}^{2}$=-23.5J
¶øÂÖ×ӵijõ¶¯ÄÜΪ25J£¬Ôò¼ÓËÙ×°ÖÃÏûºÄÁ˶¯Äܵľø´ó²¿·ÖÄÜÁ¿£¬Æðµ½Á˺ܺõļõËÙЧ¹û£®
´ð£º£¨1£©Ã¿¸ö³µÂÖ²úÉúµÄµç¶¯ÊÆÎª0.4V£¬¸ÐÓ¦µçÁ÷µÄ·½ÏòÓɳµÂÖ±ßÔµÖ¸ÏòÔ²ÐÄ£®
£¨2£©Ã¿¸ö³µÂÖÊܵ½µÄ°²ÅàÁ¦Îª0.64N£¬Í¨¹ý¼ÆËã×°ÖÃÆðµ½ºÜºÃµÄ¼õËÙЧ¹û£®
µãÆÀ ±¾ÌâÊǵç´Å¸ÐÓ¦ÖÐÒ»°ãÄÚÈݵļÆË㣬ÀûÓÃÁ˸ÐÓ¦¶¯ÊƺͰ²ÅàÁ¦µÄ±í´ïʽ£¬Í¨¹ýÄÜÁ¿Êغ㶨ÂɼÆËã°²ÅàÁ¦µÄ¹¦Êǹؼü£®
| A£® | Öð½¥¼õС | B£® | Öð½¥Ôö´ó | C£® | ÏȼõСºóÔö´ó | D£® | ÏÈÔö´óºó¼õС |
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{1}{\root{3}{{2}^{2}}}$ | D£® | $\frac{1}{\sqrt{{2}^{3}}}$ |
| A£® | s1£¾s2 | B£® | t1£¾t2 | ||
| C£® | Á½´ÎÂ䵨µÄËÙ¶ÈÏàͬ | D£® | ÒòÌõ¼þ²»¹»£¬ÎÞ·¨±È½Ï |
| A£® | µ±t=0.5sʱÖʵãb¡¢cµÄÎ»ÒÆÏàͬ | |
| B£® | µ±t=0.6sʱÖʵãaËÙ¶ÈÑØyÖḺ·½Ïò | |
| C£® | ÖʵãcÔÚÕâ¶Îʱ¼äÄÚÑØxÖáÕý·½ÏòÒÆ¶¯ÁË3m | |
| D£® | ÖʵãdÔÚÕâ¶Îʱ¼äÄÚͨ¹ýµÄ·³ÌΪ20cm |