题目内容
5.| A. | 能使原来静止的质子获得的最大速率为$\frac{1}{2}$v | |
| B. | 能使原来静止的质子获得的动能为$\frac{1}{4}$Ek | |
| C. | 加速质子的交流电场频率与加速α粒子的交流电场频率之比为1:1 | |
| D. | 加速质子的总次数与加速α粒子总次数之比为2:1 |
分析 带电粒子在回旋加速器中,靠电场加速,磁场偏转,通过带电粒子在磁场中运动半径公式得出带电粒子射出时的速度,看与什么因素有关.
解答 解:AB、设D形盒的半径为R.
根据qvB=m$\frac{{v}^{2}}{R}$,解得粒子获得的最大 v=$\frac{qBR}{m}$,B、R相同,v与比荷成正比.由于质子的比荷是α粒子的2倍,则质子获得的最大速率为2v.
带电粒子获得的最大动能 EK=$\frac{1}{2}$mv2=$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$,不改变B和R,该回旋加速器加速α粒子获得的最大动能等于加速质子的最大动能,故A、B错误;
C、交变电场的周期与带电粒子运动的周期相等,带电粒子在匀强磁场中运动的周期T=$\frac{2πm}{qB}$,频率f=$\frac{1}{T}$=$\frac{qB}{2πm}$与比荷成正比,所以加速质子的交流电场频率与加速α粒子的交流电场频率之比为2:1,故C错误;
D、设加速电压为U,加速次数为n,则EK=nqU,n=$\frac{{E}_{k}}{qU}$,EK和U相等,则加速质子的总次数与加速α粒子总次数之比为2:1,故D正确.
故选:D.
点评 解决本题的关键知道回旋加速器运用电场加速,磁场偏转来加速带电粒子,但要注意粒子射出的动能与加速电压无关,与磁感应强度的大小有关.
练习册系列答案
相关题目
15.
一定质量的理想气体,由初始状态A开始,状态变化按图中的箭头所示方向进行,最后又回到初始状态A,对于这个循环过程,以下说法正确的是( )
| A. | 由A→B.气体的分子平均动能增大,吸收热量 | |
| B. | 由B→C,气体的分子数密度增大,内能减小,吸收热量 | |
| C. | 由C→A,气体的内能减小,放出热量,外界对气体做功 | |
| D. | 经过一个循环过程后,气体内能可能减少,也可能增加 |
16.
如图所示,MN是空气与某种液体的分界面,一束红光由空气射到分界面,一部分光被反射,一部分光进入液体中.当入射角是45°时,折射角为30°.以下说法正确的是( )
| A. | 反射光线与折射光线的夹角为120° | |
| B. | 该液体对红光的折射率为$\frac{{\sqrt{2}}}{2}$ | |
| C. | 该液体对红光的全反射临界角为45° | |
| D. | 当紫光以同样的入射角从空气射到分界面,折射角也是30° |
13.
如图所示,光滑固定导轨m、n水平放置,两根导体棒p、q平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处自由下落接近回路时(重力加速度为g)( )
| A. | p、q将互相靠拢 | B. | p、q将互相远离 | ||
| C. | 磁铁下落的加速度仍为g | D. | 磁铁下落的加速度小于g |
20.
如图所示,a、b、c是一条电场线上的三点,一个带正电的粒子仅在电场力的作用下沿这条电场线由a运动到c的过程中,其动能增加.已知a、b间距离等于b、c间距离,用φa、φb、φc分别表示a、b、c三点的电势,用Ea、Eb、Ec分别表示a、b、c三点的场强大小.根据上述条件所做出的下列判断中一定正确的是( )
| A. | Ea=Eb=Ec | B. | Ea>Eb>Ec | C. | φa-φb=φb-φc | D. | φa>φb>φc |
6.
如图所示,A、B是绕地球运行的“天宫一号”椭圆形轨道上的近地点和远地点,则“天宫一号”( )
| A. | 在A点时线速度大 | |
| B. | 在A点时重力加速度小 | |
| C. | 在B点时向心加速度小 | |
| D. | 在B点时向心加速度大于该处的重力加速度 |