ÌâÄ¿ÄÚÈÝ
19£®·ÖÎö ´øµçÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÕÒ³öÔ²Ðĸù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɲ¢½áºÏ¼¸ºÎ¹ØÏµÁÐʽ£»Ôڵ糡ÖÐ×öÀàËÆÆ½Å×Ô˶¯£¬´¹Ö±µç³¡Ïß·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬Æ½Ðе糡Ïß·½Ïò×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý·ÖÎ»ÒÆ¹«Ê½ÁÐʽ£¬×îºóÁªÁ¢·½³Ì×éÇó½â£®
½â´ð ½â£ºÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¨Èçͼ£©£®ÓÉÓÚÁ£×ÓÔÚ·Ö½çÏß´¦µÄËÙ¶ÈÓë·Ö½çÏß´¹Ö±£¬Ô²ÐÄOÓ¦ÔÚ·Ö½çÏßÉÏ£¬OP³¤¶È¼´ÎªÁ£×ÓÔ˶¯µÄÔ²»¡µÄ°ë¾¶R£®Óɼ¸ºÎ¹ØÏµµÃ ![]()
R2=l12+£¨R-d£©2 ¢Ù
ÉèÁ£×ÓµÄÖÊÁ¿ºÍËù´øÕýµçºÉ·Ö±ðΪmºÍq£¬ÓÉÂåÂ××ÈÁ¦¹«Ê½ºÍÅ£¶ÙµÚ¶þ¶¨Âɵãº
qvB=m$\frac{{v}^{2}}{R}$¢Ú
ÉèP'ΪÐéÏßÓë·Ö½çÏߵĽ»µã£¬¡ÏPOP'=¦Á£¬ÔòÁ£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼äΪ
t1=$\frac{R¦Á}{v}$¢Û
ʽÖÐsin¦Á=$\frac{{l}_{1}}{R}$¢Ü
Á£×Ó½øÈëµç³¡ºó×öÀàÆ½Å×Ô˶¯£¬Æä³õËÙ¶ÈΪv£¬·½Ïò´¹Ö±Óڵ糡£®ÉèÁ£×Ó¼ÓËÙ¶È´óСΪa£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
qE=ma ¢Ý
ÓÉÔ˶¯Ñ§¹«Ê½ÓÐ
d=$\frac{1}{2}$at22 ¢Þ
l2=vt2 ¢ß
ʽÖÐt2ÊÇÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä
Óɢ٢ڢݢޢßʽµÃ$\frac{E}{B}$=$\frac{{{l}_{1}}^{2}+{d}^{2}}{{{l}_{2}}^{2}}$v¢à
Óɢ٢ۢܢßʽµÃ$\frac{{t}_{1}}{{t}_{2}}$=$\frac{{{l}_{1}}^{2}+{d}^{2}}{2d{l}_{2}}$arcsin$\frac{2d{l}_{1}}{{{l}_{1}}^{2}+{d}^{2}}$
´ð£ºµç³¡Ç¿¶ÈÓë´Å¸ÐӦǿ¶È´óС֮±È$\frac{{{l}_{1}}^{2}+{d}^{2}}{{{l}_{2}}^{2}}$v£»
Á£×ÓÔڴų¡Óëµç³¡ÖÐÔ˶¯Ê±¼äÖ®±È$\frac{{{l}_{1}}^{2}+{d}^{2}}{2d{l}_{2}}$arcsin$\frac{2d{l}_{1}}{{{l}_{1}}^{2}+{d}^{2}}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÔ˶¯¹æÂɲ¢»³öÔ˶¯¹ì¼££¬È»ºó·Ö¶Î°´ÕÕÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢ÏòÐÄÁ¦¹«Ê½¡¢ÀàËÆÆ½Å×Ô˶¯µÄ·ÖÎ»ÒÆ¹«Ê½ÁÐʽÇó½â£®
| A£® | FNÏȼõСºóÔö´ó | B£® | FNÖð½¥Ôö´ó | C£® | FÖð½¥Ôö´ó | D£® | FÖð½¥¼õС |
| A£® | ×ö±ä¼ÓËÙÖ±ÏßÔ˶¯ | B£® | ×ö³õËٶȲ»ÎªÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯ | ||
| C£® | ×öÔȼõËÙÔ˶¯ | D£® | ¼ÌÐø±£³Ö×öÔÈËÙÖ±ÏßÔ˶¯ |