ÌâÄ¿ÄÚÈÝ
2£®£¨1£©Îï¿éµÚÒ»´Î¾¹ýBµãʱµÄËÙ¶ÈvB£»
£¨2£©ÔÈÇ¿µç³¡µÄ³¡Ç¿E£»
£¨3£©Îï¿éµÚ¶þ´Î¾¹ýBµãºóÏòÓÒÔ˶¯µÄ×î´ó¾àÀëx£®
·ÖÎö £¨1£©¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉÇóÎï¿éµÚÒ»´Î¾¹ýBµãʱµÄËÙ¶È£»
£¨2£©´ÓPµ½B¸ù¾Ý¶¯Äܶ¨ÀíÇó½âµç³¡Ç¿¶ÈE£»
£¨3£©´ÓBÏòÓÒµ½ËٶȼõΪ0¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇóÎï¿éµÚ¶þ´Î¾¹ýBµãºóÏòÓÒÔ˶¯µÄ×î´ó¾àÀ룻
½â´ð ½â£º£¨1£©ÓÉ»úеÄÜÊØºã¶¨ÂÉÓÐ$\frac{1}{2}m{v}_{B}^{2}=mg£¨R+\frac{R}{2}£©$
½âµÃ${v}_{B}^{\;}=\sqrt{3gR}$
£¨2£©´ÓPµ½B£¬Óɶ¯Äܶ¨ÀíÓÐ$2R£¨qE-¦Ìmg£©=\frac{1}{2}m{v}_{B}^{2}$
½âµÃ£º$E=\frac{mg£¨3+4¦Ì£©}{4q}$
£¨3£©Óɶ¯Äܶ¨ÀíÓÐ$-£¨qE+¦Ìmg£©s=0-\frac{1}{2}m{v}_{B}^{2}$
½âµÃ£º$s=\frac{6R}{3+8¦Ì}$
´ð£º£¨1£©Îï¿éµÚÒ»´Î¾¹ýBµãʱµÄËÙ¶È${v}_{B}^{\;}$Ϊ$\sqrt{3gR}$£»
£¨2£©ÔÈÇ¿µç³¡µÄ³¡Ç¿EΪ$\frac{mg£¨3+4¦Ì£©}{4q}$£»
£¨3£©Îï¿éµÚ¶þ´Î¾¹ýBµãºóÏòÓÒÔ˶¯µÄ×î´ó¾àÀëxΪ$\frac{6R}{3+8¦Ì}$
µãÆÀ ±¾ÌâÊÇÅ£¶ÙµÚ¶þ¶¨ÂɺͶ¯Äܶ¨ÀíÏà½áºÏµÄÎÊÌ⣬½âÌâʱעÒ⣺µç³¡Á¦¡¢ÖØÁ¦×ö¹¦Óë·¾¶Î޹أ¬¶øÄ¦²ÁÁ¦×ö¹¦Óë·¾¶Óйأ»¶¯Äܶ¨Àí¿ÉÒÔÈ«¹ý³ÌʹÓã¬Ò²¿ÉÒÔ·Ö¹ý³ÌÇó½â£¬×¢ÒâÅжϹ¦µÄÕý¸º£®
| A£® | Oµã³¡Ç¿ÎªÁã | B£® | OµãµçÊÆÎªÁã | ||
| C£® | DµãºÍFµã³¡Ç¿Ïàͬ | D£® | DµãºÍFµãµçÊÆÏàͬ |
| A£® | ¼ÓËÙÉÏÉý | B£® | ¼õËÙÉÏÉý | C£® | ¾²Ö¹ | D£® | ÔÈËÙϽµ |
| A£® | СÇòµÄÖØÁ¦ÊÆÄÜÔö¼Ó-W1 | |
| B£® | СÇòµÄµçÊÆÄܼõÉÙW2 | |
| C£® | СÇòµÄ»úеÄÜÔö¼ÓW1+$\frac{1}{2}$mv2 | |
| D£® | СÇòÓ뵯»É×é³ÉµÄϵͳ»úеÄܲ»Êغã |
| A£® | ³·È¥Fºó£¬ÎïÌåÏÈ×ö¼ÓËÙÔ˶¯£¬ÔÙ×ö¼õËÙÔ˶¯ | |
| B£® | ³·È¥Fʱ£¬ÎïÌå¸ÕÔ˶¯Ê±µÄ¼ÓËÙ¶È´óСΪ$\frac{k{x}_{0}}{m}$-¦Ìg | |
| C£® | ÔÚµ¯»É»Ö¸´Ô³¤Ö®Ç°µÄijһλÖã¬ËÙ¶È´ïµ½×î´óÖµ | |
| D£® | ÎïÌå×öÔȼõËÙÔ˶¯µÄʱ¼äΪ2$\sqrt{\frac{{x}_{0}}{¦Ìg}}$ |
| A£® | 30N | B£® | 25N | C£® | 20N | D£® | 10N |
| A£® | µØÃæÖ¸»ÓÖÐÐÄ | B£® | ´óº£ÉϽøÐиú×Ù¼à²âµÄ²âÁ¿´¬ | ||
| C£® | Ì«Ñô | D£® | ·É´¬µÄ×ù²Õ |
| A£® | СÇò´ÓλÖá°1¡±¿ªÊ¼ÊÍ·Å | |
| B£® | СÇòËùÔڵصÄÖØÁ¦¼ÓËÙ¶È´óСΪ$\frac{d}{2{T}^{2}}$ | |
| C£® | СÇòÔÚλÖá°3¡±µÄËÙ¶È´óСΪ$\frac{7d}{T}$ | |
| D£® | СÇòÔÚλÖá°4¡±µÄËÙ¶È´óСΪСÇòÔÚλÖá°2¡±µÄ1.8±¶ |