题目内容
17.一个物体从静止开始做匀加速直线运动,第1秒末的速度为2m/s,则物体在第3秒的位移为( )| A. | 15m | B. | 10m | C. | 5m | D. | 4m |
分析 根据匀变速直线运动的速度时间公式求出物体的加速度,结合位移时间公式求出物体在第3s内的位移.
解答 解:根据v=at1得,物体的加速度a=$\frac{v}{{t}_{1}}=\frac{2}{1}m/{s}^{2}=2m/{s}^{2}$,
则物体在第3s内的位移${x}_{3}=\frac{1}{2}a{{t}_{3}}^{2}-\frac{1}{2}a{{t}_{2}}^{2}$=$\frac{1}{2}×2×(9-4)m=5m$.
故选:C.
点评 解决本题的关键掌握匀变速直线运动的速度时间公式和位移时间公式,并能灵活运用,基础题.
练习册系列答案
相关题目
7.
如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉至某一位置并释放,圆环摆动过程中(环平面与磁场始终保持垂直)经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界,若不计空气阻力,则( )
| A. | 圆环向右穿过磁场后,还能摆至原来的高度 | |
| B. | 在进入和离开磁场时,圆环中均有感应电流 | |
| C. | 圆环进入磁场后,离最低点越近速度越大,感应电流也越大 | |
| D. | 圆环最终将静止在最低点 |
12.下列关于重力、弹力和摩擦力的说法,正确的是( )
| A. | 物体的重心在物体的几何中心上 | |
| B. | 劲度系数越大,弹力越大 | |
| C. | 动摩擦因数与物体之间的压力成反比,与滑动摩擦力成正比 | |
| D. | 静摩擦力的大小是在零和最大静摩擦力之间发生变化 |
2.
如图所示.a、b两带电粒子垂直射入同一匀强磁场中,分别沿图中箭头表示方向做圆周运动(不计粒子重力).则( )
| A. | a粒子带正电,b粒子带负电 | |
| B. | a粒子带负电,b粒子带正电 | |
| C. | 若它们的质量、电荷量相等,则a的动能大 | |
| D. | 若它们的速率、质量相等,则a所带电荷量多 |
9.汽车驶向一凸形桥,为了在通过桥顶时,减小汽车对桥的压力,司机应( )
| A. | 以尽可能小的速度通过桥顶 | B. | 适当增大速度通过桥顶 | ||
| C. | 以任何速度匀速通过桥顶 | D. | 使通过桥顶的向心加速度尽可能小 |
6.
如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于点,将圆环拉至位置后无初速释放,在圆环从摆向的过程中( )
| A. | 感应电流方向先逆时针后顺时针再逆时针 | |
| B. | 感应电流方向一直是逆时针 | |
| C. | 安培力方向始终与速度方向相反 | |
| D. | 安培力方向始终沿水平方向 |
7.
如图所示,有A、B两颗行星绕同一颗恒星M做匀速圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则( )
| A. | 经过时间t=T1+T2,两行星再次相距最近 | |
| B. | 经过时间t=$\frac{{T}_{1}{T}_{2}}{{T}_{2}-{T}_{1}}$,两行星再次相距最近 | |
| C. | 经过时间t=$\frac{{T}_{1}{T}_{2}}{{T}_{2}-{T}_{1}}$,两行星相距最远经 | |
| D. | 经过时间t=$\frac{{T}_{1}+{T}_{2}}{2}$,两行星相距最远 |