ÌâÄ¿ÄÚÈÝ
19£®| A£® | 1.4¦Ð$\sqrt{\frac{R}{g}}$ | B£® | 1.7¦Ð$\sqrt{\frac{R}{g}}$ | C£® | 3.6¦Ð$\sqrt{\frac{R}{g}}$ | D£® | 4.7¦Ð$\sqrt{\frac{R}{g}}$ |
·ÖÎö ¶ÔµÇÔÂÆ÷ºÍº½Ìì·É»úÒÀ¾Ý¿ªÆÕÀÕµÚÈý¶¨ÂÉÁгöµÈʽ£¬ÎªÊ¹µÇÔÂÆ÷ÈÔÑØÔÍÖÔ²¹ìµÀ»Øµ½·ÖÀëµãÓ뺽Ìì·É»úʵÏÖ¶Ô½Ó£¬¸ù¾ÝÖÜÆÚ¹ØÏµÁгöµÈʽÇó½â£®
½â´ð ½â£ºÉèµÇÔÂÆ÷ºÍº½Ìì·É»úÔÚ°ë¾¶3RµÄ¹ìµÀÉÏÔËÐÐʱµÄÖÜÆÚΪT£¬ÒòÆäÈÆÔÂÇò×÷Ô²ÖÜÔ˶¯£¬ËùÒÔÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÓУº
$G\frac{mM}{{r}^{2}}=mr\frac{4{¦Ð}^{2}}{{T}^{2}}$
r=3R
T=2¦Ð$\sqrt{\frac{{r}^{3}}{GM}}$=6¦Ð$\sqrt{\frac{3{R}^{3}}{GM}}$£¬
ÔÚÔÂÇò±íÃæµÄÎïÌåËùÊÜÖØÁ¦½üËÆµÈÓÚÍòÓÐÒýÁ¦£¬
GM=gR2
ËùÒÔT=6¦Ð$\sqrt{\frac{3R}{g}}$¡¢Ù
ÉèµÇÔÂÆ÷ÔÚСÍÖÔ²¹ìµÀÔËÐеÄÖÜÆÚÊÇT1£¬º½Ìì·É»úÔÚ´óÔ²¹ìµÀÔËÐеÄÖÜÆÚÊÇT2£®
¶ÔµÇÔÂÆ÷ºÍº½Ìì·É»úÒÀ¾Ý¿ªÆÕÀÕµÚÈý¶¨ÂÉ·Ö±ðÓУº$\frac{{T}^{2}}{£¨3R£©^{3}}=\frac{{T}_{1}^{2}}{£¨2R£©^{3}}=\frac{{T}_{2}^{2}}{£¨3R£©^{3}}$
ΪʹµÇÔÂÆ÷ÈÔÑØÔÍÖÔ²¹ìµÀ»Øµ½·ÖÀëµãÓ뺽Ìì·É»úʵÏÖ¶Ô½Ó£¬µÇÔÂÆ÷¿ÉÒÔÔÚÔÂÇò±íÃæ¶ºÁôµÄʱ¼ätÓ¦Âú×㣺
t=nT2-T1 ¢Û£¨ÆäÖУ¬n=1¡¢2¡¢3¡¢¡£©¡
ÁªÁ¢¢Ù¢Ú¢ÛµÃ£ºt=6¦Ðn$\sqrt{\frac{3R}{g}}$-4¦Ð$\sqrt{\frac{2R}{g}}$£¨ÆäÖУ¬n=1¡¢2¡¢3¡¢¡£©
µ±n=1ʱ£¬µÇÔÂÆ÷¿ÉÒÔÔÚÔÂÇòÉÏÍ£ÁôµÄʱ¼ä×î¶Ì£¬¼´£ºt=4.7¦Ð$\sqrt{\frac{R}{g}}$
¹ÊÑ¡£ºD£®
µãÆÀ ¸ÃÌ⿼²éÁËÍòÓÐÒýÁ¦¶¨Âɼ°Ô²ÖÜÔ˶¯Ïà¹Ø¹«Ê½µÄÖ±½ÓÓ¦Óã¬ÄѶȲ»´ó£¬ÊôÓÚÖеµÌ⣮
| A£® | µç×ÓÔÚA¡¢BÁ½µãµÄµçÊÆÄÜÏàµÈ | |
| B£® | µç×ÓÔÚA¡¢BÁ½µãµÄ¼ÓËÙ¶È´óСÏàµÈ·½ÏòÏà·´ | |
| C£® | ÈôÈ¡ÎÞÏÞÔ¶´¦µçÊÆÎªÁ㣬ÔòOµã´¦µçÊÆÐ¡ÓÚÁã | |
| D£® | µç×Ó´ÓAµãÓɾ²Ö¹ÊͷźóµÄÔ˶¯¹ì¼£¿ÉÄÜÊÇÇúÏß |
| A£® | ÔȱäËÙÖ±ÏßÔ˶¯ËÙ¶ÈÓëʱ¼ä£¬y±íʾËÙ¶È£¬x±íʾʱ¼ä | |
| B£® | ±ÕºÏµç·×î´óÊä³ö¹¦ÂÊÓëÍâµç×裬y±íʾ×î´óÊä³ö¹¦ÂÊ£¬x±íʾÍâµç×è | |
| C£® | ±ÕºÏµç·µÄ·¶ËµçѹºÍͨ¹ýµçÔ´µÄµçÁ÷£¬y±íʾ·¶Ëµçѹ£¬x±íʾµçÁ÷ | |
| D£® | ÔÈÇ¿µç³¡ÖУ¬µç³¡ÖеÄijµãµÄµçÊÆÓëÑØ³¡Ç¿·½ÏòÉÏÓëÁãµçÊÆ¼äµÄ¾àÀ룬y±íʾµçÊÆ£¬x±íʾÓëÁãµçÊÆ¼äµÄ¾àÀë |
| A£® | Èô²¨ÑØxÖḺ·½Ïò´«²¥£¬ÔòÊÇKµã | |
| B£® | Èô²¨ÑØxÖáÕý·½Ïò´«²¥£¬ÔòÊÇLµã | |
| C£® | Èôͼ¼×ÖÐÖʵãLÊÇÏòÉÏÕñ¶¯£¬ÔòÊÇMµã | |
| D£® | Èôͼ¼×ÖÐÖʵãLÊÇÏòÏÂÕñ¶¯£¬ÔòÊÇNµã |