题目内容
17.| A. | πa2 | B. | πb2 | C. | π(b-a)2 | D. | πn2a2 |
分析 当光线射入介质时,在球壳上恰好发生全反射时就不能进入空心球壳内,画出光路图;由sinC=$\frac{1}{n}$求出全反射临界角,由几何关系确定折射角,则可求得入射角,由几何关系即可求得入射光束的横截面积.
解答 解:若使光线恰能进入球壳内表面时恰好发生全反射.如图.
由折射定律得,进入外表面时有:n=$\frac{sini}{sinr}$
由临界角公式有 $\frac{1}{sinC}$=n
由正弦定理可得:$\frac{a}{sinr}$=$\frac{b}{sin(180°-C)}$
联立解得:sini=$\frac{a}{b}$
此平行光束在入射前的横截面积最大为:S=π(bsini)2=πa2;
故选:A.
点评 本题是几何光学问题,解答的关键是作出边界光路,根据几何知识求出折射角正弦.
练习册系列答案
相关题目
7.
如图物体A在竖直向上的拉力F的作用下静止在斜面上,则关于A受力的个数,下列说法正确的是( )
| A. | A 可能是受两个力作用 | |
| B. | A 一定是受四个力作用 | |
| C. | A 可能受三个力作用 | |
| D. | A 不是受两个力作用就是受四个力作用 |
8.上抛运动的物体达到最高点时,下列说法正确的是( )
| A. | 速度向下 | B. | 加速度向下 | ||
| C. | 速度和加速度都为零 | D. | 条件不足无法判断 |
12.有一静电场,其电势沿x轴正方向周期性变化,如图所示.现将一电荷量为q,带负电的粒子(重力不计)从坐标原点O由静止释放,电场中P、Q两点的坐标分别为1mm、4mm.则下列说法正确的是( )
| A. | 粒子沿x轴正方向一直向前运动 | |
| B. | 要想让粒子一直向前运动,粒子从O点沿x轴正方向释放的初动能不能小于40q | |
| C. | 粒子经过P点与Q点时,电势能相等,动能不相等 | |
| D. | 粒子经过P点与Q点时,电场力做功的功率相等 |
9.
小球从空中自由下落,与水平地面相碰后弹到空中某一高度,其速度-时间图象如图所示.则由图可知下列判断正确的是( )
| A. | 小球下落的加速度为5M/S2 | B. | 小球下落的高度为1m | ||
| C. | 小球能弹起的最大高度为0.45m | D. | 0.8s末小球碰到地面 |
13.
“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如图18所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A、B、C、D位置时球与板间无相对运动趋势.A为圆周的最高点,C为最低点,B、D与圆心O等高且在B、D处板与水平面夹角为θ.设球的质量为m,圆周的半径为R,重力加速度为g,不计拍的重力,若运动过程到最高点时拍与小球之间作用力恰为mg,则( )
| A. | 圆周运动的周期为:T=2π$\sqrt{\frac{2R}{g}}$ | |
| B. | 圆周运动的周期为:T=2π$\sqrt{\frac{R}{g}}$ | |
| C. | 在B、D处球拍对球的作用力为$\frac{2mg}{sinθ}$ | |
| D. | 在B、D处球拍对球的作用力为$\frac{mg}{sinθ}$ |