ÌâÄ¿ÄÚÈÝ
1£®·ÖÎö A¡¢BÓëCÅöײ¹ý³ÌÖж¯Á¿Êغ㣬Óɶ¯Á¿Êغ㶨ÂÉ¿ÉÒÔÇó³öÅöºóÈýÕߵĹ²Í¬ËÙ¶È£»Ïß¶Ï¿ª£¬BCÓëA·ÖÀë¹ý³ÌÖж¯Á¿Êغ㣬Óɶ¯Á¿Êغ㶨ÂÉ¿ÉÒÔÁз½³Ì£»ÔÚµ¯»Éµ¯¿ª¹ý³ÌÖУ¬ÏµÍ³»úеÄÜÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉ¿ÉÒÔÁз½³Ì£¬½â·½³Ì¼´¿ÉÇó³öµ¯»ÉµÄµ¯ÐÔÊÆÄÜ£®ÓÉÄÜÁ¿ÊغãµÃ£¬ÇóB¡¢CÒòÅöײ¶øËðʧµÄ»úеÄÜ£®´Ó¶øÇóµÃËüÃǵıÈÖµ£®
½â´ð ½â£ºÉèËÙ¶È·½ÏòÏòÓÒΪÕý£¬¿ªÊ¼Ê±A¡¢BµÄËÙ¶ÈΪv0£¬ÅöºóA¡¢B¡¢CµÄ¹²Í¬ËÙ¶È´óСΪv£¬Óɶ¯Á¿Êغ㶨ÂɵÃ
3mv0=4mv ¢Ù
ÒÀÌâÒ⣬AÀ뿪µ¯»ÉºóµÄËÙÂÊÓëÅöײǰÏàµÈ£¬¿ÉÖªÆäËÙ¶È·½ÏòÓ¦¸ÃÏò×ó£¬ÉèAÀ뿪µ¯»Éʱ£¬B¡¢CµÄËÙ¶ÈΪv1£¬Óɶ¯Á¿Êغ㶨ÂɵÃ
4mv=-2mv0+2mv1 ¢Ú
É赯»ÉµÄµ¯ÐÔÊÆÄÜΪEp£¬´ÓϸÉþ¶Ï¿ªµ½AÓ뵯»É·Ö¿ªµÄ¹ý³ÌÖлúеÄÜÊØºã£¬ÓÐ $\frac{1}{2}£¨4m£©{v^2}+{E_p}=\frac{1}{2}£¨2m£©v_0^2+\frac{1}{2}£¨2m£©v_1^2$ ¢Û
ÓÉÄÜÁ¿ÊغãµÃ£¬B¡¢CÒòÅöײ¶øËðʧµÄ»úеÄÜΪ $¡÷E=\frac{1}{2}£¨3m£©v_0^2-\frac{1}{2}£¨4m£©{v^2}$ ¢Ü
ÁªÁ¢¢Ù¢Ú¢Û¢Üʽ½âµÃ£º$\frac{¡÷E}{E_p}=\frac{3}{49}$
´ð£ºÏµÍ³ËðʧµÄ»úеÄÜÓ뵯»ÉÊͷŵĵ¯ÐÔÊÆÄÜÖ®±ÈΪ$\frac{3}{49}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÒª·ÖÎöÇå³þÎïÌåÔ˶¯¹ý³Ì£¬ÊìÁ·Ó¦Óö¯Á¿Êغ㶨ÂÉ¡¢ÄÜÁ¿Êغ㶨Âɼ´¿ÉÕýÈ·½âÌ⣮
| A£® | ÏàͬÌõ¼þÏ£¬Î¶ÈÔ½¸ß£¬¿ÅÁ£Ô½Ð¡£¬²¼ÀÊÔ˶¯Ô½Ã÷ÏÔ | |
| B£® | ºÉÒ¶ÉϵĶÖé³ÉÇòÐÎÊDZíÃæÕÅÁ¦µÄ½á¹û | |
| C£® | ²»¶Ï¸Ä½ø¼¼Êõ£¬ÈÈ»úÎüÊÕµÄÈÈÁ¿¿ÉÒÔÈ«²¿×ª»¯ÎªÓÐÓù¦ | |
| D£® | ¾§Ìå¾ßÓи÷ÏòÒìÐÔ£¬¾ß±¸¸÷ÏòͬÐԵͼÊǷǾ§Ìå | |
| E£® | Ë®µÄ±¥ºÍÆûÑ¹ËæÎ¶ȵÄÉý¸ß¶ø±ä´ó |
| A£® | µçÌݶÔÎïÌåµÄÖ§³ÖÁ¦Ëù×öµÄ¹¦µÈÓÚ$\frac{1}{2}$mv2 | |
| B£® | µçÌݶÔÎïÌåµÄÖ§³ÖÁ¦Ëù×öµÄ¹¦´óÓÚ$\frac{1}{2}$mv2 | |
| C£® | ¸ÖË÷µÄÀÁ¦Ëù×öµÄ¹¦µÈÓÚ£¨M+m£©gH+$\frac{1}{2}$£¨M+m£©v2 | |
| D£® | ¸ÖË÷µÄÀÁ¦Ëù×öµÄ¹¦µÈÓÚ$\frac{1}{2}$mv2+MgH |