题目内容
如图所示,一玻璃球体的半径为R,O为球心,AB为直径.来自B点的光线BM在M点射出,出射光线平行于AB,另一光线BN恰好在N点发生全反射.已知∠ABM=30°,求①玻璃的折射率.
②球心O到BN的距离.
【答案】分析:①根据几何关系找出光线BM的入射角和反射角,利用折射定律可求出玻璃体的折射率.
②根据几何关系求出临界角的正弦值,便可求出球心O到BN的距离.
解答:解:①已知∠ABM=30°,由几何关系知入射角i=∠BMO=30°,折射角β=60°由n=
②由题意知临界角C=∠ONB,sinC=
,则球心O到BN的距离d=RsinC=
.
答:①玻璃的折射率为
.
②球心O到BN的距离为
.
点评:该题考察了折射定律得应用,要求要熟练的记住折射定律的内容,求折射率时,一定要分清是从介质射向空气还是由空气射入介质;再者就是会用sinC=
来解决相关问题.
②根据几何关系求出临界角的正弦值,便可求出球心O到BN的距离.
解答:解:①已知∠ABM=30°,由几何关系知入射角i=∠BMO=30°,折射角β=60°由n=
②由题意知临界角C=∠ONB,sinC=
答:①玻璃的折射率为
②球心O到BN的距离为
点评:该题考察了折射定律得应用,要求要熟练的记住折射定律的内容,求折射率时,一定要分清是从介质射向空气还是由空气射入介质;再者就是会用sinC=
练习册系列答案
相关题目