题目内容

7.如图是自行车传动机构的示意图,其中I是半径为r1的大齿轮,Ⅱ是半径为r2的小齿轮,Ⅲ是半径为r3的后轮,假设脚踏板的转速为n转每秒,则自行车前进的速度为(  )
A.$\frac{πn{r}_{1}{r}_{3}}{{r}_{2}}$B.$\frac{πn{r}_{2}{r}_{3}}{{r}_{1}}$C.$\frac{2πn{r}_{1}{r}_{3}}{{r}_{2}}$D.$\frac{2πn{r}_{2}{r}_{3}}{{r}_{1}}$

分析 大齿轮和小齿轮靠链条传动,线速度相等,根据半径关系可以求出小齿轮的角速度.后轮与小齿轮具有相同的角速度,若要求出自行车的速度,需要知道后轮的半径,抓住角速度相等,求出自行车的速度.

解答 解:转速为单位时间内转过的圈数,因为转动一圈,对圆心转的角度为2π,所以ω=2πn,因为要测量自行车前进的速度,即车轮III边缘上的线速度的大小,根据题意知:轮I和轮II边缘上的线速度的大小相等,据v=rω可知:r1ω1=r2ω2,已知ω1=2πn,则轮II的角速度为:ω2=$\frac{{r}_{1}}{{r}_{2}}$ω1
因为轮II和轮III共轴,所以转动的ω相等即ω32,根据v=rω可知,v=r3ω3=$\frac{2πn{r}_{1}{r}_{3}}{{r}_{2}}$,故C正确,ABD错误;
故选:C

点评 解决本题的关键知道靠链条传动,线速度相等,共轴转动,角速度相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网