ÌâÄ¿ÄÚÈÝ
AOBÊǹ⻬µÄˮƽ¹ìµÀ£¬BCÊǰ뾶ΪRµÄ¹â»¬Ô²»¡¹ìµÀ£¬Á½¹ìµÀÇ¡ºÃÏàÇУ¬Èçͼʾ£¬ÖÊÁ¿ÎªM=9mµÄСľ¿é¾²Ö¹ÔÚOµã£¬Ò»ÖÊÁ¿ÎªmµÄ×Óµ¯ÒÔijһËÙ¶ÈˮƽÉäÈëľ¿éÄÚδ´©³ö£¬Ä¾¿éÇ¡ºÃ»¬µ½Ô²»¡µÄ×î¸ßµãC´¦£¨×Óµ¯¡¢Ä¾¿é¾ù¿ÉÊÓΪÖʵ㣩£¬Çó£º
£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶È
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊǶàÉÙ£¿
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
£¬ÔònΪ¶àÉÙ£¿
£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶È
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊǶàÉÙ£¿
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
| R |
| 4 |
£¨1£©´ÓBµ½C£¬ÓÉ»úеÄÜÊØºãÖª
(M+m)gR=
(M+m)
Óɶ¯Á¿ÊغãÖªmv=£¨M+m£©V¹²£¬
ÁªÁ¢µÃ v=10
£¨2£©Ä¾¿é»Øµ½OµãËÙ¶ÈΪV¹²=
£¬
±»µÚ¶þ¿Å×Óµ¯»÷ÖÐʱÓɶ¯Á¿ÊغãÖª
mv-(M+m)
=(2m+9m)V2
ËùÒÔV2=0£¬
¼´±»Å¼Êý¿Å×Óµ¯»÷ÖкóËٶȾùΪ0£¬
ËùÒÔľ¿éÉÏÉý¸ß¶ÈΪ0£®
£¨3£©Óɶ¯Á¿Êغ㼰ÄÜÁ¿ÊغãÖª
mv=£¨M+nm£©V
(M+nm)g?
=
(M+nm)V2
´úÈëÊýÖµµÃ
n=11
´ð£º£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶ÈÊÇ10
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊÇ0
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
£¬ÔònΪ11
(M+m)gR=
| 1 |
| 2 |
| V | 2¹² |
Óɶ¯Á¿ÊغãÖªmv=£¨M+m£©V¹²£¬
ÁªÁ¢µÃ v=10
| 2gR |
£¨2£©Ä¾¿é»Øµ½OµãËÙ¶ÈΪV¹²=
| 2gR |
±»µÚ¶þ¿Å×Óµ¯»÷ÖÐʱÓɶ¯Á¿ÊغãÖª
mv-(M+m)
| 2gR |
ËùÒÔV2=0£¬
¼´±»Å¼Êý¿Å×Óµ¯»÷ÖкóËٶȾùΪ0£¬
ËùÒÔľ¿éÉÏÉý¸ß¶ÈΪ0£®
£¨3£©Óɶ¯Á¿Êغ㼰ÄÜÁ¿ÊغãÖª
mv=£¨M+nm£©V
(M+nm)g?
| R |
| 4 |
| 1 |
| 2 |
´úÈëÊýÖµµÃ
n=11
´ð£º£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶ÈÊÇ10
| 2gR |
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊÇ0
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
| R |
| 4 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿