ÌâÄ¿ÄÚÈÝ
£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶È
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊǶàÉÙ£¿
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
| R | 4 |
·ÖÎö£º£¨1£©´ÓBµ½C£¬ÓÉ»úеÄÜÊØºãÇó½â×Óµ¯ÉäÈëľ¿éºóµÄËÙ¶È£¬Óɶ¯Á¿ÊغãÇó½â£®
£¨2£©Ä¾¿é»Øµ½Oµã±»µÚ¶þ¿Å×Óµ¯»÷ÖÐʱÓɶ¯Á¿ÊغãÇó½â£®
£¨3£©Óɶ¯Á¿Êغ㼰ÄÜÁ¿ÊغãÇó½â£®
£¨2£©Ä¾¿é»Øµ½Oµã±»µÚ¶þ¿Å×Óµ¯»÷ÖÐʱÓɶ¯Á¿ÊغãÇó½â£®
£¨3£©Óɶ¯Á¿Êغ㼰ÄÜÁ¿ÊغãÇó½â£®
½â´ð£º½â£º£¨1£©´ÓBµ½C£¬ÓÉ»úеÄÜÊØºãÖª
(M+m)gR=
(M+m)
Óɶ¯Á¿ÊغãÖªmv=£¨M+m£©V¹²£¬
ÁªÁ¢µÃ v=10
£¨2£©Ä¾¿é»Øµ½OµãËÙ¶ÈΪV¹²=
£¬
±»µÚ¶þ¿Å×Óµ¯»÷ÖÐʱÓɶ¯Á¿ÊغãÖª
mv-(M+m)
=(2m+9m)V2
ËùÒÔV2=0£¬
¼´±»Å¼Êý¿Å×Óµ¯»÷ÖкóËٶȾùΪ0£¬
ËùÒÔľ¿éÉÏÉý¸ß¶ÈΪ0£®
£¨3£©Óɶ¯Á¿Êغ㼰ÄÜÁ¿ÊغãÖª
mv=£¨M+nm£©V
(M+nm)g?
=
(M+nm)V2
´úÈëÊýÖµµÃ
n=11
´ð£º£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶ÈÊÇ10
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊÇ0
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
£¬ÔònΪ11
(M+m)gR=
| 1 |
| 2 |
| V | 2 ¹² |
Óɶ¯Á¿ÊغãÖªmv=£¨M+m£©V¹²£¬
ÁªÁ¢µÃ v=10
| 2gR |
£¨2£©Ä¾¿é»Øµ½OµãËÙ¶ÈΪV¹²=
| 2gR |
±»µÚ¶þ¿Å×Óµ¯»÷ÖÐʱÓɶ¯Á¿ÊغãÖª
mv-(M+m)
| 2gR |
ËùÒÔV2=0£¬
¼´±»Å¼Êý¿Å×Óµ¯»÷ÖкóËٶȾùΪ0£¬
ËùÒÔľ¿éÉÏÉý¸ß¶ÈΪ0£®
£¨3£©Óɶ¯Á¿Êغ㼰ÄÜÁ¿ÊغãÖª
mv=£¨M+nm£©V
(M+nm)g?
| R |
| 4 |
| 1 |
| 2 |
´úÈëÊýÖµµÃ
n=11
´ð£º£¨1£©×Óµ¯ÉäÈëľ¿éǰµÄËÙ¶ÈÊÇ10
| 2gR |
£¨2£©Èôÿµ±Ä¾¿é»Øµ½Oµãʱ£¬Á¢¼´ÓÐÏàͬµÄ×Óµ¯ÒÔÏàͬËÙ¶ÈÉäÈëľ¿éÇÒÁôÔÚÆäÄÚ£¬µ±µÚ6¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÄÜÉÏÉýµÄ¸ß¶ÈÊÇ0
£¨3£©µ±µÚn¿Å×Óµ¯ÉäÈëľ¿éºó£¬Ä¾¿éÉÏÉýµÄ×î´ó¸ß¶ÈΪ
| R |
| 4 |
µãÆÀ£º¶ÔÓÚÔ²ÖÜÔ˶¯£¬³£³£ÊÇ»úеÄÜÊØºã¶¨ÂÉ»ò¶¯Äܶ¨ÀíÓëÅ£¶Ù¶¨ÂɵÄ×ۺϣ®×Óµ¯Éä»÷ľ¿é¹ý³Ì£¬»ù±¾µÄ¹æÂÉÊǶ¯Á¿Êغã
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿