ÌâÄ¿ÄÚÈÝ
20£®| A£® | ÎÀÐÇa¡¢bµÄËÙ¶ÈÖ®±ÈΪ2£º1 | |
| B£® | ÎÀÐÇbµÄÖÜÆÚΪ$\frac{T}{8}$ | |
| C£® | ÎÀÐÇbÿ´ÎÔÚÃ¤ÇøÔËÐеÄʱ¼ä$\frac{{¦È}_{1}+{¦È}_{2}}{14¦Ð}$T | |
| D£® | ÎÀÐÇbÿ´ÎÔÚÃ¤ÇøÔËÐеÄʱ¼ä$\frac{{¦È}_{1}+{¦È}_{2}}{16¦Ð}$T |
·ÖÎö ÓÉÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÁÐʽÇó½âÎÀÐÇa¡¢bµÄËÙ¶ÈÖ®±ÈÒÔ¼°ÎÀÐÇbµÄÖÜÆÚ£®ÎÀÐǼäµÄͨѶÐźÅÊÓÎªÑØÖ±Ïß´«²¥£¬Óɼ¸ºÎ¹ØÏµµÃµ½ÎÀÐÇbÔÚÃ¤ÇøÓÐÁ½¸ö±ßÔµÏà¶ÔÓÚµØÇòµÄÕŽǣ¬ÔÙÇó½âÔÚÃ¤ÇøÔËÐеÄʱ¼ä£®
½â´ð
½â£ºA¡¢ÉèÎÀÐÇa¡¢bµÄ¹ìµÀ°ë¾¶·Ö±ðΪr1ºÍr2£®µØÇò°ë¾¶ÎªR£®¸ù¾Ý$G\frac{Mm}{{r}^{2}}=m\frac{{v}^{2}}{r}$µÃ£º$v=\sqrt{\frac{GM}{r}}$£¬ÎÀÐÇa¡¢bµÄËÙ¶ÈÖ®±ÈΪ1£º2£®¹ÊA´íÎó£®
B¡¢ÓÉ$G\frac{Mm}{{r}^{2}}=m\frac{{4¦Ð}^{2}r}{{T}^{2}}$¿ÉµÃ T=2¦Ð$\sqrt{\frac{{r}^{3}}{GM}}$£¬¿ÉµÃ r1=4r2£®ÔòµÃÎÀÐÇbÐǵÄÖÜÆÚΪ$\frac{T}{8}$£¬¹ÊBÕýÈ·£®
CD¡¢Èçͼ£¬A¡¢BÊÇÎÀÐÇÃ¤ÇøÁ½¸ö±ßԵλÖã¬Óɼ¸ºÎ֪ʶ¿ÉµÃ¡ÏAOB=¦È1+¦È2£¬Ôò £¨$\frac{2¦Ð}{\frac{t}{8}}-\frac{2¦Ð}{T}$£©t=¡ÏAOB=¦È1+¦È2£¬
½âµÃ£¬bÿ´ÎÔÚÃ¤ÇøÔËÐеÄʱ¼äΪ t=$\frac{{¦È}_{1}+{¦È}_{2}}{14¦Ð}$T£¬¹ÊCÕýÈ·£¬D´íÎó£®
¹ÊÑ¡£ºBC
µãÆÀ ±¾Ìâ¼ÈÒªÕÆÎÕÎÀÐÇÎÊÌâµÄ»ù±¾Ë¼Â·£ºÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬¸üÖØÒªµÄÊÇ»³öʾÒâͼ£¬ÔËÓü¸ºÎ֪ʶ½â´ð£®
| A£® | EA£¾EB | B£® | EA£¼EB | ||
| C£® | EA=EB | D£® | ²»ÄÜÅж¨EA¡¢EBµÄ´óС |
| A£® | F1=k$\frac{{Q}^{2}}{{l}^{2}}$£¬F2=k$\frac{{Q}^{2}}{{l}^{2}}$ | B£® | F1¡Ùk$\frac{{Q}^{2}}{{l}^{2}}$£¬F2¡Ùk$\frac{{Q}^{2}}{{l}^{2}}$ | ||
| C£® | F1¡Ùk$\frac{{Q}^{2}}{{l}^{2}}$£¬F2=k$\frac{{Q}^{2}}{{l}^{2}}$ | D£® | F1=k$\frac{{Q}^{2}}{{l}^{2}}$£¬F2¡Ùk$\frac{{Q}^{2}}{{l}^{2}}$ |
| t£¨s£©Ä© | 0 | 1 | 2 | 3 | 4 |
| x £¨m£© | 0 | 4 | 8 | -1 | -4 |
| A£® | x1£¾x2£¬·½ÏòÏà·´ | B£® | x1£¼x2£¬·½ÏòÏàͬ | C£® | v1£¼v2£¬·½ÏòÏàͬ | D£® | v1£¾v2£¬·½ÏòÏà·´ |
| A£® | µç·ÖÐÿͨ¹ý1CµçºÉÁ¿£¬µçÔ´°Ñ0.5JµÄ»¯Ñ§ÄÜת±äΪµçÄÜ | |
| B£® | Ðîµç³ØÁ½¼«¼äµÄµçѹΪ2V | |
| C£® | Ðîµç³ØÔÚ1sÄÚ½«2JµÄ»¯Ñ§ÄÜת±ä³ÉµçÄÜ | |
| D£® | Ðîµç³Ø½«»¯Ñ§ÄÜת±äΪµçÄܵı¾Áì±ÈÒ»½Ú¸Éµç³Ø£¨µç¶¯ÊÆÎª1.5V£©µÄ´ó |