ÌâÄ¿ÄÚÈÝ
7£®¼×¡¢ÒÒÁ½Í¬Ñ§¾ùÉè¼ÆÁ˲⶯Ħ²ÁÒòÊýµÄʵÑ飮ÒÑÖªÖØÁ¦¼ÓËÙ¶ÈΪg£®£¨1£©¼×ͬѧËùÉè¼ÆµÄʵÑé×°ÖÃÈçͼ¼×Ëùʾ£®ÆäÖÐAΪһÖÊÁ¿ÎªMµÄ³¤Ö±Ä¾°å£¬BΪľ°åÉÏ·ÅÖõÄÖÊÁ¿ÎªmµÄÎï¿é£¬CΪÎï¿éÓÒ¶ËÁ¬½ÓµÄÒ»ÇáÖʵ¯»É²âÁ¦¼Æ£®ÊµÑéʱÓÃÁ¦½«A´ÓBµÄÏ·½³é³ö£¬Í¨¹ýCµÄ¶ÁÊýF1¼´¿É²â³ö¶¯Ä¦²ÁÒòÊý£®Ôò¸ÃÉè¼ÆÄܲâ³öAÓëB£¨Ìî¡°AÓëB¡±»ò¡°AÓëµØÃæ¡±£©Ö®¼äµÄ¶¯Ä¦²ÁÒòÊý£¬Æä±í´ïʽΪ¦Ì=$\frac{{F}_{1}}{mg}$£®
£¨2£©ÒÒͬѧµÄÉè¼ÆÈçͼÒÒËùʾ£®ËûÔÚÒ»¶Ë´øÓж¨»¬Âֵij¤Ä¾°åÉϹ̶¨ÓÐA¡¢BÁ½¸ö¹âµçÃÅ£¬Óë¹âµçÃÅÏàÁ¬µÄ¼ÆÊ±Æ÷¿ÉÒÔÏÔʾ´øÓÐÕÚ¹âÆ¬µÄÎï¿éÔÚÆä¼äµÄÔ˶¯Ê±¼ä£¬Óë¿ç¹ý¶¨»¬ÂÖµÄÇáÖÊϸÉþÏàÁ¬µÄÇáÖʲâÁ¦¼ÆÄÜÏÔʾ¹Ò¹³´¦ËùÊܵÄÀÁ¦£®ÊµÑéʱ£¬¶à´Î¸Ä±äɰͰÖÐɰµÄÖÊÁ¿£¬Ã¿´Î¶¼ÈÃÎï¿é´Ó¿¿½ü¹âµçÃÅA´¦Óɾ²Ö¹¿ªÊ¼Ô˶¯£¬¶Á³ö¶à×é²âÁ¦¼ÆÊ¾ÊýF¼°¶ÔÓ¦µÄÎï¿éÔÚÁ½¹âµçÃÅÖ®¼äµÄÔ˶¯Ê±¼ät£®ÔÚ×ø±êϵÖÐ×÷³öF-$\frac{1}{{t}^{2}}$µÄͼÏßÈçͼ£¨±û£©Ëùʾ£¬Í¼ÏßµÄбÂÊΪk£¬Óë×ÝÖáµÄ½Ø¾àΪb£®ÒòÒÒͬѧ²»Äܲâ³öС³µÖÊÁ¿£¬¹Ê¸Ãͬѧ»¹Ó¦¸Ã²â³öµÄÎïÀíÁ¿Îª¹âµçÃÅA¡¢BÖ®¼äµÄ¾àÀëx£®¸ù¾Ý¸Ã²âÁ¿ÎïÀíÁ¿¼°Í¼ÏßÐÅÏ¢¿ÉÖªÎï¿éÓëľ°åÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý±í´ïʽΪ¦Ì¡ä=$\frac{2xb}{kg}$£®
·ÖÎö £¨1£©µ±ÓÃÁ¦½«A´ÓBµÄÏ·½³é³ö´ïµ½Îȶ¨×´Ì¬Ê±£¬¸ù¾ÝBËùÊܵϬ¶¯Ä¦²ÁÁ¦Ó뵯»É²âÁ¦¼ÆµÄÀÁ¦¶þÁ¦Æ½ºâ£¬½ø¶øÖªµÀ»¬¶¯Ä¦²ÁÁ¦µÄ´óС£¬
ÔÚË®Æ½Ãæ·ÅÖõÄÎïÌå¶ÔË®Æ½ÃæµÄѹÁ¦µÈÓÚÖØÁ¦£¬¸ù¾Ý»¬¶¯Ä¦²ÁÁ¦f=¦ÌNµÄ±äÐι«Ê½´Ó¶ø¿É²âµÃ¶¯Ä¦²ÁÒòÊý£®
£¨2£©Ð¡³µ´Ó¿¿½ü¼×¹âµçÃÅ´¦Óɾ²Ö¹¿ªÊ¼×öÔȼÓËÙÔ˶¯£¬Î»ÒÆx=$\frac{1}{2}$at2£®Î»ÒÆÒ»¶¨£¬ÕÒ³öaÓëtµÄ¹ØÏµ£¬ÒÔ¼°Ð±ÂÊk¡¢½Ø¾àbµÄÒâÒ壬Ȼºó¼´¿ÉÇó³ö¶¯Ä¦²ÁÒòÊýµÄ±í´ïʽ£®
½â´ð ½â£º£¨1£©µ±A´ïµ½Îȶ¨×´Ì¬Ê±B´¦ÓÚ¾²Ö¹×´Ì¬£¬
µ¯»É²âÁ¦¼ÆµÄ¶ÁÊýF1ÓëBËùÊܵϬ¶¯Ä¦²ÁÁ¦f´óСÏàµÈ£¬¼´f=F1£¬
B¶Ôľ¿éAµÄѹÁ¦´óСN=GB=mg£¬
ÓÉf=¦ÌNµÃ£¬¶¯Ä¦²ÁÒòÊý¦Ì=$\frac{f}{N}$=$\frac{{F}_{1}}{mg}$£¬¼´ÎªAÓëBÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý£®
£¨2£©Ð¡³µÓɾ²Ö¹¿ªÊ¼×öÔȼÓËÙÔ˶¯£¬
¸ù¾ÝÔȼÓËÙÖ±ÏßÔ˶¯Î»ÒÆÊ±¼ä¹«Ê½µÃ£ºx=$\frac{1}{2}$at2£®
Ôò¼ÓËÙ¶Èa=$\frac{2x}{{t}^{2}}$£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬
¶ÔÓÚɳºÍɳͰ£¬FºÏ=F-¦Ìmg=ma£¬
Ôò²âÁ¦¼ÆÊ¾Êý£ºF=ma+¦Ìmg=$\frac{2mx}{{t}^{2}}$+¦Ìmg£¬
ÔòͼÏßµÄбÂÊk=2mx£»×ÝÖáµÄ½Ø¾àb=¦Ìmg£»
kÓëĦ²ÁÁ¦ÊÇ·ñ´æÔÚÎ޹أ¬
ÔòÎï¿éÓ볤ľ°å¼äµÄĦ²ÁÒòÊý£º
¦Ì=$\frac{b}{mg}$=$\frac{b}{\frac{k}{2x}g}$=$\frac{2xb}{kg}$£®
¹Ê´ð°¸Îª£º£¨1£©AÓëB£¬¦Ì=$\frac{{F}_{1}}{mg}$£»
£¨2£©¹âµçÃÅA¡¢BÖ®¼äµÄ¾àÀëx£»¦Ì¡ä=$\frac{2xb}{kg}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é»¬¶¯Ä¦²ÁÁ¦¹«Ê½¡¢Î»Òƹ«Ê½Å£¶ÙµÚ¶þ¶¨ÂɵÄÁé»îÔËÓ㬹ؼüÒªÕÆÎÕ¹âµçÃŲâÁ¿ËٶȵÄÔÀí£¬ÊìÁ·ÔËÓÃÅ£¶ÙµÚ¶þ¶¨Âɲ¢½áºÏͼÏó·ÖÎö¼´¿ÉÕýÈ·½â´ð£¬ÓÐÒ»¶¨µÄÄѶȣ®
| A£® | ÒÒ³µÔÚÔ˶¯¹ý³ÌÖеÄ×î´óËÙ¶ÈÓëa1¡¢a2ÓÐ¹Ø | |
| B£® | A¡¢BÁ½µãµÄ³¤¶ÈΪv0t | |
| C£® | ²»ÂÛa1¡¢a2ΪºÎÖµ£¬¶¼ÓÐ$\frac{{{a_1}{a_2}}}{{{a_1}+{a_2}}}=\frac{{2{v_0}}}{t}$ | |
| D£® | ²»ÂÛa1¡¢a2ΪºÎÖµ£¬¶¼ÓÐ$\frac{{{a_1}{a_2}}}{{{a_1}+{a_2}}}=\frac{v_0}{t}$ |
| A£® | ÎïÌåÔÚ2sÄ©µÄËÙ¶ÈΪ4m/s | |
| B£® | ÎïÌåÔÚ2sÄÚµÄÎ»ÒÆÎª8m | |
| C£® | ÎïÌå4sÄ©µÄËÙ¶ÈÒ»¶¨±È3sÄ©µÄËÙ¶È´ó2m/s | |
| D£® | ÎïÌåÔÚ2sÄ򵀮½¾ùËÙ¶ÈΪ4m/s |