题目内容

精英家教网如图所示,AB段A为长度L1=5m的粗糙水平桌面,其动摩擦因数μ=0.2,它高出水平桌面CD的高度h=1.25m,EFD为一半经R=0.4m的光滑半圆形轨道.现有一质量m=1kg的小球,在恒定的外力F=4N的作用下,由静止开始从水平面的A点开始运动.力F作用一段距离后将其撤去,随后物体从B点飞出,落在水平地面CD上某处并反弹,且不计碰撞时间.因为与地面碰撞有能量损失,反弹过程水平速度分量不变而竖直速度分量减小,弹起后刚好沿半圆槽DEF的点切向进入,开始做圆周运动,且在E点时与圆弧槽间相互作用力恰好为零.取g=10m/s2,试求:
(1)刚从E点进入时,小球的速度VE大小及方向;
(2)小球从B点到E点的时间及CD间的距离L2
(3)外力作用的距离S.
分析:小球从B点做平抛运动,利用在E点时与圆弧槽间相互作用力恰好为零先求E点速度,再根据平抛运动的知识求水平位移;从A到B由动能定理求出外力作用的距离;
解答:解:(1)令平抛时间为t1,水平距离为x1,斜抛时间为t2,水平距离为x2
刚从E点进入,则有:mg=m
vE2
R

解得:vE=
gR
=
10×0.4
=2m/s     
方向水平向右
(2)根据h=
1
2
gt12

解得:t1=
2h
g
=
2×1.25
10
=0.5s          
x1=vEt1=2×0.5=1m         
因斜抛可看作逆向的平抛运动,所以竖着弹起的高度h=2R=
1
2
gt22

解得:t2=
4R
g
=
4×0.4
10
=0.4s    
t=t1+t2=0.5+0.4=0.9s     
x2=vEt2=2×0.4=0.8m        
所以:L2=x1+x2=1+0.8=1.8m       
(3)令F作用距离为△x.由动能定理有:
Fs-μmgL1=
1
2
mvE2

解得:s=3m           
答:(1)刚从E点进入时,小球的速度VE大小为2m/s,方向水平向右;
(2)小球从B点到E点的时间为0.9s,CD间的距离L2为1.8m;
(3)外力作用的距离为3m.
点评:解决本题的关键理清运动的过程,综合运用平抛运动和动能定理进行解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网