ÌâÄ¿ÄÚÈÝ
3£®| A£® | ¡°òÔÁúºÅ¡±¼õËÙÉϸ¡µÄ¼ÓËÙ¶È´óСΪ$\frac{v}{t}$ | |
| B£® | t=0ʱ¿Ì£¬¡°òÔÁúºÅ¡±¾àË®ÃæµÄÉî¶ÈΪvt | |
| C£® | t=t0£¨t0£¼t£©Ê±¿Ì¾àÀëº£Æ½ÃæµÄÉî¶ÈΪ$\frac{v£¨t-{t}_{0}£©^{2}}{2t}$ | |
| D£® | t=t0£¨t0£¼t£©Ê±¿Ì¾àÀëº£Æ½ÃæµÄÉî¶ÈΪ$\frac{{vt}_{0}^{2}}{2t}$ |
·ÖÎö ¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶Èʱ¼ä¹«Ê½Çó³ö¡°òÔÁúºÅ¡±µÄ¼ÓËÙ¶È£¬²ÉÓÃÄæÏò˼ά£¬½áºÏÎ»ÒÆÊ±¼ä¹«Ê½Çó³ö¡°òÔÁúºÅ¡±ÔÚt0£¨t0£¼t£©Ê±¿Ì¾àÀëº£Æ½ÃæµÄÉî¶È£®
½â´ð ½â£ºA¡¢¡°òÔÁúºÅ¡±µÄ³õËÙ¶ÈΪ0£®Ä©ËÙ¶ÈΪv£¬¼õËÙÉϸ¡µÄ¼ÓËÙ¶È´óСΪ£º$\overline{v}=\frac{0+v}{2}=\frac{v}{2}$£®¹ÊAÕýÈ·£»
B¡¢t=0ʱ¿Ì£¬¡°òÔÁúºÅ¡±¾àË®ÃæµÄÉî¶ÈΪ£ºh=$\overline{v}t=\frac{vt}{2}$£®¹ÊB´íÎó£»
C¡¢´ÓË®Ãæ·´Ïò¿´¡°òÔÁúºÅ¡±µÄÎ»ÒÆ£¬¡°òÔÁúºÅ¡±µÄÔ˶¯¿ÉÒÔ¿´×öÊÇÔȼÓËÙÖ±ÏßÔ˶¯£¬ÔÚt0ʱ¿Ì¾àÀëË®ÃæµÄÉî¶ÈÏ൱ÓÚÏòϼÓËÙ£¨t-t0£©Ê±¼äµÄÎ»ÒÆ£¬¼´£º
h=$\frac{1}{2}a£¨t-{t}_{0}£©^{2}=\frac{1}{2}¡Á\frac{v}{t}•£¨t-{t}_{0}£©^{2}$£®¹ÊCÕýÈ·£¬D´íÎó£®
¹ÊÑ¡£ºAC
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶Èʱ¼ä¹«Ê½ºÍÎ»ÒÆÊ±¼ä¹«Ê½£¬²¢ÄÜÁé»îÔËÓ㬻ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®Ä³ÎïÌåÔÚÒ»ÌõÖ±ÏßÉÏÔ˶¯£¬ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¼ÓËٶȲ»ÎªÁ㣬ÎïÌåµÄËÙ¶ÈÒ»¶¨²»¶ÏÔö¼Ó | |
| B£® | ¼ÓËÙ¶ÈΪÁ㣬ÎïÌåµÄËÙ¶ÈÒ»¶¨Ò²ÎªÁã | |
| C£® | ÎïÌåµÄËٶȱ仯ÁË£¬¼ÓËÙ¶ÈÒ»¶¨²»ÎªÁã | |
| D£® | ¼ÓËÙ¶ÈΪÁ㣬ÎïÌåµÄËÙ¶È¿ÉÄܴܺó |
15£®¹ØÓÚÏßȦ×Ô¸ÐϵÊýµÄ˵·¨£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ×Ô¸Ðµç¶¯ÊÆÔ½´ó£¬×Ô¸ÐϵÊýÒ²Ô½´ó | |
| B£® | °ÑÏßȦÖеÄÌúо³é³öһЩ£¬×Ô¸ÐϵÊý¼õС | |
| C£® | °ÑÏßȦÔÑÊýÔö¼ÓһЩ£¬×Ô¸ÐϵÊý±ä´ó | |
| D£® | ÏßȦÖеĵçÁ÷µÈÓÚÁãʱ£¬×Ô¸ÐϵÊýÒ²µÈÓÚÁã |