ÌâÄ¿ÄÚÈÝ
18£®ÈçͼMNÓëPQΪˮƽ·ÅÖÃµÄÆ½ÐнðÊôµ¼¹ì£¬ÒÑÖªµ¼¹ì×ã¹»³¤Çҹ⻬£¬Æä¼ä¾àd=0.2m£¬a¡¢bÊÇÁ½¸ùºá¿çÔÚµ¼¹ìÉϵĽðÊô°ô£¬ÇÒÓëµ¼¹ì½Ó´¥Á¼ºÃ£¬Õû¸ö×°Ö÷ÅÔڴŸÐӦǿ¶ÈΪB=2TµÄÔÈÇ¿´Å³¡ÖУ¬´Å³¡·½Ïò´¹Ö±ÓÚµ¼¹ìÆ½ÃæÏòÏ£®Á½½ðÊô°ô½ÓÈëµ¼¹ì¼äµÄµç×è¾ùΪR=0.5¦¸£¬½ðÊôµ¼¹ìµÄµç×èºöÂÔ²»¼Æ£®Èô¿ªÊ¼Ê±b°ô¾²Ö¹·ÅÖã¬a°ô´Ó×ã¹»Ô¶´¦ÒÔ³õËÙ¶Èv0Ïòb°ôÔ˶¯£¬Á½½ðÊô°ôµÄËÙ¶ÈÓëʱ¼ä¹ØÏµÈçͼËùʾ£®ÒÑÖªb°ôÖÊÁ¿mb=0.1kg£¬Ç󣺣¨1£©a°ôÖÊÁ¿maΪ¶àÉÙ£¿
£¨2£©µ±t=t1ʱa°ôËÙ¶Èva=3.5m/s£¬´Ëʱ¿Ìb°ôµÄ¼ÓËÙ¶ÈabΪ¶àÉÙ£¿
£¨3£©0¡«t2¹ý³ÌÖÐa¡¢b°ôÉÏ×ܹ²²úÉúµÄÈÈÁ¿QÊǶàÉÙ£¿
·ÖÎö £¨1£©Á½°ô×é³ÉµÄϵͳºÏÍâÁ¦ÎªÁ㣬ϵͳµÄ¶¯Á¿Êغ㣬ÓÉͼ¶Á³öËÙ¶È£¬¾Ý´ËÁÐʽÇó½âaµÄÖÊÁ¿£®
£¨2£©µ±t=t1ʱa°ôËÙ¶Èva=3.5m/s£¬Óɶ¯Á¿ÊغãÇó³öbµÄËÙ¶È£¬ÓÉE=Bd£¨va-vb£©Çó³ö»ØÂ·ÖеĸÐÓ¦µç¶¯ÊÆ£¬ÓÉÅ·Ä·¶¨ÂÉÇóµÃ¸ÐÓ¦µçÁ÷£¬´Ó¶ø¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½âb°ôµÄ¼ÓËÙ¶È£®
£¨3£©¸ù¾ÝÄÜÁ¿ÊغãÇó½âÈÈÁ¿Q£®
½â´ð ½â£º£¨1£©ÓÉͼ֪£¬aµÄ³õËÙ¶ÈΪ v0=4m/s£¬Á½°ô¹²Í¬ËÙ¶ÈΪv=3m/s
È¡ÏòÓÒΪÕý·½Ïò£¬¸ù¾ÝϵͳµÄ¶¯Á¿ÊغãµÃ£ºmav0=£¨ma+mb£©v
¿ÉµÃ ma=$\frac{{m}_{b}v}{{v}_{0}-v}$=$\frac{0.1¡Á3}{4-3}$=0.3kg
£¨2£©µ±t=t1ʱa°ôËÙ¶Èva=3.5m/s£¬ÓÉϵͳµÄ¶¯Á¿ÊغãµÃ£ºmav0=mava+mbvb£»
´úÈë½âµÃ vb=1.5m/s
»ØÂ·ÖÐ×ܵĸÐÓ¦µç¶¯ÊÆ E=Bd£¨va-vb£©=2¡Á0.2¡Á£¨3.5-1.5£©=0.8V
¸ÐÓ¦µçÁ÷ I=$\frac{E}{2R}$=$\frac{0.8}{2¡Á0.5}$A=0.8A
´Ëʱ¿Ìb°ôµÄ¼ÓËÙ¶È ab=$\frac{BdI}{{m}_{b}}$=$\frac{2¡Á0.2¡Á0.8}{0.1}$=3.2m/s2£»
£¨3£©0¡«t2¹ý³ÌÖÐa¡¢b°ôÉÏ×ܹ²²úÉúµÄÈÈÁ¿ Q=$\frac{1}{2}{m}_{a}{v}_{0}^{2}$-$\frac{1}{2}£¨{m}_{a}+{m}_{b}£©{v}^{2}$=$\frac{1}{2}$¡Á0.3¡Á42-$\frac{1}{2}$¡Á0.4¡Á32=0.6J
´ð£º
£¨1£©a°ôÖÊÁ¿maΪ0.3kg£®
£¨2£©µ±t=t1ʱa°ôËÙ¶Èva=3.5m/s£¬´Ëʱ¿Ìb°ôµÄ¼ÓËÙ¶ÈabΪ3.2m/s2£®
£¨3£©0¡«t2¹ý³ÌÖÐa¡¢b°ôÉÏ×ܹ²²úÉúµÄÈÈÁ¿QÊÇ0.6J£®
µãÆÀ ¶ÔÓÚË«¸ËÎÊÌ⣬ÓëСÇòµÄ·Çµ¯ÐÔÅöײÀàËÆ£¬×¥×¡ÏµÍ³µÄ¶¯Á¿ÊغãºÍÄÜÁ¿ÊØºã½øÐзÖÎö£®
| ʱ¼ät£¨s£© | 0¡«2 | 2¡«4 | 4¡«6 | 6¡«8 |
| ÀÁ¦F£¨N£© | 4 | 8 | 4 | 8 |
£¨2£©6s¡«8sÄÚÀÁ¦FËù×öµÄ¹¦£®
| A£® | ²¨µÄƵÂÊÓ벨ԴµÄƵÂÊÎÞ¹Ø | |
| B£® | ´ËʱP¡¢QÁ½ÖʵãÕñ¶¯·½ÏòÏàͬ | |
| C£® | ÔÙ¾¹ý0.5s£¬²¨Ç¡ºÃ´«µ½×ø±êΪ£¨-5m£¬0£©µÄλÖà | |
| D£® | ÄÜÓë¸Ã²¨·¢Éú¸ÉÉæµÄºá²¨µÄƵÂÊÒ»¶¨Îª3Hz |
| A£® | °×°«ÐǺÍÂö³åÐǰéÐÇ×öÔ²ÖÜÔ˶¯µÄ½ÇËÙ¶ÈÓëÆäÖÊÁ¿³É·´±È | |
| B£® | °×°«ÐǺÍÂö³åÐǰéÐÇ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚÏàͬ | |
| C£® | °×°«ÐǺÍÂö³åÐǰéÐÇ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶ÓëÆäÖÊÁ¿³ÉÕý±È | |
| D£® | °×°«ÐǺÍÂö³åÐǰéÐÇËùÊܵÄÏòÐÄÁ¦ÓëÆäÖÊÁ¿³ÉÕý±È |
| A£® | åçÐǵÄÖÊÁ¿M=$\frac{4{¦Ð}^{2}{{r}_{1}}^{3}}{G{{T}_{1}}^{2}}$ | |
| B£® | µÇ½²ÕÔڰ뾶Ϊr2¹ìµÀÉÏÔ˶¯µÄÖÜÆÚT2=T1$\sqrt{\frac{{{r}_{2}}^{3}}{{{r}_{1}}^{3}}}$ | |
| C£® | µÇ½²ÕÔڰ뾶Ϊr1Óë°ë¾¶Îªr2µÄ¹ìµÀÉÏÔ˶¯µÄÏòÐļÓËÙ¶ÈÖ®±ÈΪ$\frac{{{r}_{1}}^{2}}{{{r}_{2}}^{2}}$ | |
| D£® | åçÐDZíÃæµÄÖØÁ¦¼ÓËÙ¶Èg¡ä=$\frac{4{¦Ð}^{2}{r}_{1}}{G{{T}_{1}}^{2}}$ |
| A£® | Æû³µÒ»Ö±×öÔȼÓËÙÔ˶¯ | |
| B£® | Æû³µÐÐÊ»µÄ×î´óËÙ¶ÈΪ20m/s | |
| C£® | ·¢¶¯»úÇ£ÒýÁ¦¶ÔÆû³µ×öµÄ¹¦µÈÓÚÆû³µ»úеÄܵÄÔö¼Ó | |
| D£® | ÄÜÇó³öÆû³µÔ˶¯µ½×î´óËÙ¶ÈËùÐèµÄʱ¼ä |
| A£® | ΢Á£´ø¸ºµç | |
| B£® | µçÈÝÆ÷µÄ´øµçÁ¿Îª$\frac{CBL{v}_{0}}{2}$ | |
| C£® | Èôab°ôÒÔËÙ¶È2v0Ïò×óÔ˶¯£¬Î¢Á£½«¾¹ýʱ¼ä$\sqrt{\frac{d}{g}}$µ½´ïÉϼ«°å | |
| D£® | Èôab°ôÔÚÍâÁ¦×÷ÓÃÏÂÓɾ²Ö¹¿ªÊ¼ÔÚµ¼¹ìÉÏ×÷¼òгÔ˶¯£¬Ô˶¯ÖеÄ×î´óËÙ¶ÈΪv0£¬ÔòÁ÷¾2RµÄ×î´óµçÁ÷Ϊ$\frac{BL{v}_{0}}{3R}$ |