ÌâÄ¿ÄÚÈÝ
5£®| A£® | Á÷¹ýµç×èRµÄµçÁ¿Îª$\frac{Bdl}{R}$ | |
| B£® | ¸ËµÄËÙ¶È×î´óֵΪ$\frac{£¨F-¦Ìmg£©£¨R+r£©}{{B}^{2}{l}^{2}}$ | |
| C£® | ºãÁ¦F×öµÄ¹¦ÓëĦ²ÁÁ¦×öµÄ¹¦Ö®ºÍµÈÓڸ˶¯Äܵı仯Á¿ | |
| D£® | ºãÁ¦F×öµÄ¹¦Óë°²±¶Á¦×öµÄ¹¦Ö®ºÍ´óÓڸ˶¯Äܵı仯Á¿ |
·ÖÎö ¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÇó³öƽ¾ù¸ÐÓ¦µç¶¯ÊÆ£¬´Ó¶øµÃ³öƽ¾ù¸ÐÓ¦µçÁ÷£¬¸ù¾Ýq=ItÇó³öͨ¹ýµç×èµÄµçÁ¿£®
µ±¸Ë×ÓËùÊܵĺÏÁ¦ÎªÁãʱËÙ¶È×î´ó£¬¸ù¾Ýƽºâ½áºÏ±ÕºÏµç·ŷķ¶¨ÂÉÒÔ¼°Çиî²úÉúµÄ¸ÐÓ¦µç¶¯Êƹ«Ê½Çó³ö×î´óËÙ¶È£®
¸ù¾Ý¶¯Äܶ¨ÀíÅжϺãÁ¦¡¢Ä¦²ÁÁ¦¡¢°²ÅàÁ¦×ö¹¦Ó붯ÄܵĹØÏµ£®
½â´ð ½â£ºA¡¢Á÷¹ýµç×èRµÄµçÁ¿q=$\frac{¡÷¦µ}{R+r}$=$\frac{BLd}{R+r}$£¬¹ÊA´íÎó£®
B¡¢µ±¼ÓËÙ¶ÈΪÁãʱ£¬ËÙ¶È×î´ó£¬ÓУº$F=\frac{{B}^{2}{d}^{2}{v}_{m}}{R+r}+¦Ìmg$
½âµÃ×î´óËÙ¶ÈΪ£º${v}_{m}=\frac{£¨F-¦Ìmg£©£¨R+r£©}{{B}^{2}{d}^{2}}$£¬¹ÊBÕýÈ·£®
C¡¢D¡¢¸ù¾Ý¶¯Äܶ¨ÀíÖª£ºWF-WA-Wf=¡÷Ek
ÖªºãÁ¦FÓë°²ÅàÁ¦×ö¹¦µÄ´úÊýºÍµÈÓÚ¶¯ÄܵÄÔö¼ÓÁ¿ºÍĦ²Á²úÉúµÄÄÚÄÜÖ®ºÍ£¬ËùÒÔºãÁ¦F×öµÄ¹¦Óë°²ÅàÁ¦×öµÄ¹¦Ö®ºÍ´óÓڸ˶¯Äܵı仯Á¿£¬¹ÊC´íÎó£¬DÕýÈ·£®
¹ÊÑ¡£ºBD
µãÆÀ ±¾Ì⿼²éÁ˵ç´Å¸ÐÓ¦Ó붯Á¦Ñ§ÖªÊ¶¡¢ÄÜÁ¿µÄ×ۺϣ¬ÕÆÎÕ°²ÅàÁ¦ºÍµçÁ¿µÄ¾Ñé±í´ïʽ£¬¼´${F}_{A}=\frac{{B}^{2}{L}^{2}v}{R}$£¬q=$n\frac{¡÷¦µ}{{R}_{×Ü}}$£®
| A£® | $\frac{2k¡÷x}{Il}$ | B£® | $\frac{2Il}{k¡÷x}$ | C£® | $\frac{k¡÷x}{Il}$ | D£® | $\frac{kIl}{¡÷x}$ |
| A£® | ʵÑéÖÐÁ÷¹ýµç×èRµÄµçÁ÷ÊÇÓÉÓÚÔ²ÅÌÄÚ²úÉúÎÐÁ÷ÏÖÏó¶øÐÎ³ÉµÄ | |
| B£® | Èô´ÓÉÏÍùÏ¿´£¬Ô²ÅÌ˳ʱÕëת¶¯£¬ÔòÔ²ÅÌÖÐÐĵçÊÆ±È±ßÔµÒª¸ß | |
| C£® | ʵÑé¹ý³ÌÖУ¬´©¹ýÔ²Å̵ĴÅͨÁ¿·¢ÉúÁ˱仯£¬²úÉú¸ÐÓ¦µç¶¯ÊÆ | |
| D£® | Èô´ÓÉÏÏòÏ¿´£¬Ô²ÅÌ˳ʱÕëת¶¯£¬ÔòÓеçÁ÷ÑØaµ½bµÄ·½ÏòÁ÷¶¯Á÷¾µç×èR |
| A£® | FA+FB=2.5N | B£® | FA+FB£¾2.5N | C£® | FA£¼2.5N | D£® | FB£¾FA |
| A£® | ½ðÊô°ô¿Ë·þ°²ÅàÁ¦×öµÄ¹¦W1=0.25J | B£® | ½ðÊô°ô¿Ë·þĦ²ÁÁ¦×öµÄ¹¦W2=4J | ||
| C£® | Õû¸öϵͳ²úÉúµÄ×ÜÈÈÁ¿Q=4.25J | D£® | ÀÁ¦×öµÄ¹¦W=9.25J |
| A£® | Èôv0=$\sqrt{gR}$£¬Ôò»¬¿é¶Ô°ëÇò¶¥µãÎÞѹÁ¦ | |
| B£® | Èôv0=$\sqrt{gR}$£¬Ôò»¬¿é¶Ô°ëÇò¶¥µãѹÁ¦´óСΪmg | |
| C£® | Èôv0=$\frac{1}{2}$$\sqrt{gR}$£¬Ôò»¬¿é¶Ô°ëÇò¶¥µãѹÁ¦´óСΪ$\frac{1}{2}$mg | |
| D£® | Èôv0=$\frac{1}{2}$$\sqrt{gR}$£¬Ôò»¬¿é¶Ô°ëÇò¶¥µãѹÁ¦´óСΪ$\frac{3}{4}$mg |