ÌâÄ¿ÄÚÈÝ
15£®£¨1£©µç³¡Ç¿¶ÈE´óС£»
£¨2£©´Å¸ÐӦǿ¶ÈBµÄ´óС£»
£¨3£©Á£×ÓÔÚ¸´ºÏ³¡ÖеÄÔ˶¯Ê±¼ä£®
·ÖÎö £¨1£©Î¢Á£×öÖ±ÏßÔ˶¯£¬ÊÜÖØÁ¦¡¢µç³¡Á¦ºÍÂåÂØ×ÈÁ¦£¬ÓÉÓÚÂåÂØ×ÈÁ¦´óСÓëËٶȳÉÕý±È£¬¹ÊÈýÁ¦Æ½ºâ£¬Á£×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝƽºâÌõ¼þÁÐʽÇó½â£»
£¨2£©Á£×ÓÔ˶¯µ½A£¨l£¬l£©Ê±£¬µç³¡·½ÏòͻȻ±äΪÊúÖ±ÏòÉÏ£¨²»¼Æµç³¡±ä»¯µÄʱ¼ä£©£¬µç³¡Á¦ÓëÖØÁ¦Æ½ºâ£¬Á£×Ó¼ÌÐøÔ˶¯ÊÇÔÈËÙÔ²ÖÜÔ˶¯£¬»³öÔ˶¯µÄ¹ì¼££¬½áºÏ¼¸ºÎ¹ØÏµÁÐʽ·ÖÎöµÃµ½¹ìµÀ°ë¾¶£¬È»ºó¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â´Å¸ÐӦǿ¶ÈBµÄ´óС£»
£¨3£©¸ù¾Ý¹«Ê½t=$\frac{¦È}{2¦Ð}T$Çó½âÔڴų¡ÖеÄÔ˶¯Ê±¼ä£¬ÔÚ¸ù¾ÝËٶȶ¨Ò幫ʽÇó½âÔÈËÙµÄʱ¼ä£¬Ïà¼Ó¾ÍµÃµ½×Üʱ¼ä£®
½â´ð ½â£º£¨1£©Î¢Á£ÔÚµ½´ïA£¨l£¬l£©Ö®Ç°×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊÜÁ¦·ÖÎöÈçͼ£º![]()
¸ù¾ÝƽºâÌõ¼þ£¬ÓУºqE=mg£»
½âµÃ£ºE=$\frac{mg}{q}$£»
£¨2£©¸ù¾ÝƽºâÌõ¼þ£¬ÓУºqvB=$\sqrt{2}$mg£»
µç³¡·½Ïò±ä»¯ºó£¬Î¢Á£ËùÊÜÖØÁ¦Óëµç³¡Á¦Æ½ºâ£¬Î¢Á£ÔÚÂåÂØ×ÈÁ¦×÷ÓÃÏÂ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¹ì¼£Èçͼ£º![]()
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУºqvB=m$\frac{{v}^{2}}{r}$£»
Óɼ¸ºÎ¹ØÏµ¿ÉµÃ£ºr=$\sqrt{2}$l£»
ÁªÁ¢½âµÃ£º
v=$\sqrt{2gl}$£»
B=$\frac{m}{q}\sqrt{\frac{g}{l}}$£»
£¨3£©Î¢Á£×öÔÈËÙÔ²ÖÜÔ˶¯µÄʱ¼ä£º${t}_{1}=\frac{\sqrt{2}l}{v}=\sqrt{\frac{l}{g}}$£»
×öÔ²ÖÜÔ˶¯µÄʱ¼ä£º${t}_{2}=\frac{\frac{3}{4}¦Ð•\sqrt{2}l}{v}=\frac{3¦Ð}{4}\sqrt{\frac{l}{g}}$£¬
ÔÚ¸´ºÏ³¡ÖÐÔ˶¯Ê±¼ä£ºt=t1+t2=£¨$\frac{3}{4}¦Ð$+1£©$\sqrt{\frac{l}{g}}$£»
´ð£º£¨1£©µç³¡Ç¿¶ÈE´óСΪ$\frac{mg}{q}$£»
£¨2£©´Å¸ÐӦǿ¶ÈBµÄ´óСΪ$\frac{m}{q}\sqrt{\frac{g}{l}}$£»
£¨3£©Á£×ÓÔÚ¸´ºÏ³¡ÖеÄÔ˶¯Ê±¼äΪ£¨$\frac{3}{4}¦Ð$+1£©$\sqrt{\frac{l}{g}}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷ȷ΢Á£ÊÜÁ¦Çé¿öºÍÔ˶¯ÐÔÖÊ£¬Òª»³öÔ˶¯¹ì¼££¬Ôì³ÉÔ²ÐÄ£¬½áºÏ¼¸ºÎ¹ØÏµÇó½â¹ìµÀ°ë¾¶£¬²»ÄÑ£®
| A£® | ¿â | B£® | ·¨ | C£® | Å£/¿â | D£® | ·ü |
| A£® | $\frac{4{¦Ð}^{2}{r}^{3}}{G{T}^{2}}$ | B£® | $\frac{4{¦Ð}^{2}{r}^{2}£¨r-{r}_{1}£©}{G{T}^{2}}$ | C£® | $\frac{4{¦Ð}^{2}{r}^{2}}{G{T}^{2}}$ | D£® | $\frac{4{¦Ð}^{2}{r}^{2}{r}_{1}}{G{T}^{2}}$ |
| A£® | ¦ØB£¾¦ØA=¦ØC aC£¼aA£¼aB | B£® | ¦ØC=¦ØA£¾¦ØB aC£¼aA=aB | ||
| C£® | vA=vB£¼vC¡¡ aC£¾aA£¾aB | D£® | vA=vB£¾vC aA=aB£¾aC |