ÌâÄ¿ÄÚÈÝ
14£®Í¼£¨a£©Îª²âÁ¿»¬¿éÓëˮƽľ°åÖ®¼äµÄ¶¯Ä¦²ÁÒòÊýµÄʵÑé×°ÖÃʾÒâͼ£®Ä¾°å¹Ì¶¨ÔÚˮƽ×ÀÃæÉÏ£¬´òµã¼ÆÊ±Æ÷µçÔ´µÄƵÂÊΪ50HZ£¬¿ªÊ¼ÊÔÑéʱ£¬ÔÚÍÐÅÌÖзÅÈëÊÊÁ¿íÀÂ룬»¬¿é¿ªÊ¼×öÔȼÓËÙÔ˶¯£¬ÔÚÖ½´øÉÏ´ò³öһϵÁеĵ㣮£¨1£©Í¼£¨b£©¸ø³öµÄÊÇʵÑéÖлñÈ¡µÄÒ»ÌõÖ½´øµÄÒ»²¿·Ö£¬Ã¿ÏàÁÚÁ½¼ÆÊýµã¼ä»¹ÓÐ4¸ö´òµã£¨Í¼ÖÐδ±ê³ö£©£¬¼ÆÊýµã¼äµÄ¾àÀëÈçͼËùʾ£®¸ù¾ÝͼÖÐÊý¾Ý¼ÆËã¼ÓËÙ¶Èa=0.50m/s2£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
£¨2£©Îª²âÁ¿¶¯Ä¦²ÁÒòÊý£¬ÏÂÁÐÎïÀíÁ¿Öл¹Ó¦²âÁ¿µÄÓÐCD£®£¨ÌîÈëÕýÈ·´ð°¸µÄ×Öĸ£©
A£®»¬¿éÔ˶¯µÄʱ¼ät
B£®Ä¾°åµÄÖÊÁ¿m1
C£®»¬¿éµÄÖÊÁ¿m2
D£®ÍÐÅ̺ÍíÀÂëµÄ×ÜÖÊÁ¿m3
£¨3£©»¬¿éÓëľ°å¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=$\frac{{m}_{3}g-£¨{m}_{2}+{m}_{3}£©g}{{m}_{2}g}$£¨Óñ»²âÎïÀíÁ¿µÄ×Öĸ±íʾ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£©£®
·ÖÎö £¨1£©ÀûÓÃÖð²î·¨¡÷x=aT2¿ÉÒÔÇó³öÎïÌåµÄ¼ÓËÙ¶È´óС£»
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓÐ=ma£¬ÓÉ´Ë¿ÉÖªÐèÒª²âÁ¿µÄÎïÀíÁ¿£®
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵıí´ïʽ£¬¿ÉÒÔÇó³öĦ²ÁϵÊýµÄ±í´ïʽ£®
½â´ð ½â£º£¨1£©Ã¿ÏàÁÚÁ½¼ÆÊýµã¼ä»¹ÓÐ4¸ö´òµã£¬ËµÃ÷ÏàÁڵļÆÊýµãʱ¼ä¼ä¸ô£ºT=0.1s£¬
ÓÉͼb¿ÉÖª£¬x1=2.40cm=0.0240m£¬x2=1.89cm=0.0189m£¬x3=1.40cm=0.0140m£¬x4=3.39cm=0.0339m£¬x5=3.88cm=0.0388m£¬x6=4.37cm=0.0437m£»
¸ù¾ÝÖð²î·¨ÓУºa=$\frac{£¨{x}_{6}+{x}_{5}+{x}_{4}£©-£¨{x}_{1}+{x}_{2}+{x}_{3}£©}{9{T}^{2}}$=$\frac{£¨0.0437+0.0388+0.0339£©-£¨0.0140+0.0189+0.0240£©}{9¡Á0.01}$=0.50m/s2
£¨2£©Òª²âÁ¿¶¯Ä¦²ÁÒòÊý£¬ÓÉf=¦ÌFN ¿ÉÖªÒªÇó¦Ì£¬ÐèÒªÖªµÀĦ²ÁÁ¦ºÍѹÁ¦µÄ´óС£¬Ñ¹Á¦¾ÍÊÇ»¬¿éµÄÖØÁ¦£¬ËùÒÔÐèÒªÖªµÀ»¬¿éµÄÖÊÁ¿£¬Ä¦²ÁÁ¦Òª¸ù¾ÝÌú¿éµÄÔ˶¯À´ÇóµÃ£¬»¬¿é×öµÄÊÇÔȼÓËÙÔ˶¯£¬À»¬¿éÔ˶¯µÄÊÇÍÐÅ̺ÍíÀÂ룬ËùÒÔÒ²ÒªÖªµÀÍÐÅ̺ÍíÀÂëµÄÖÊÁ¿£¬¹ÊAB´íÎó£¬CDÕýÈ·£®
¹ÊÑ¡£ºCD£®
£¨3£©ÒÔÕû¸öϵͳΪÑо¿¶ÔÏ󣬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓУº
m3g-f=£¨m3+m2£©a¡¢Ù
f=¦Ìm2g¡¢Ú
ÁªÁ¢¢Ù¢Ú½âµÃ£º¦Ì=$\frac{{m}_{3}g-£¨{m}_{2}+{m}_{3}£©a}{{m}_{2}g}$£®
¹Ê´ð°¸Îª£º£¨1£©0.50£»£¨2£©CD£»£¨3£©$\frac{{m}_{3}g-£¨{m}_{2}+{m}_{3}£©a}{{m}_{2}g}$
µãÆÀ ±¾Ì⿼²é»¬¶¯Ä¦²ÁÒòÊýµÄ²âÁ¿£¬Òª×¢ÒⱾʵÑéÀàËÆÓÚÑé֤ţ¶ÙµÚ¶þ¶¨ÂɵÄʵÑ飬ͨ¹ý·ÖÎöÃ÷ȷʵÑéÔÀí£¬Ã÷ȷʵÑéÖÐÊý¾Ý·ÖÎöµÄ»ù±¾·½·¨²ÅÄÜ׼ȷÇó½â£®
| A£® | Ò»¶¨Îª20N | B£® | Ò»¶¨Îª0 | ||
| C£® | Ò»¶¨Îª10N | D£® | Ìõ¼þ²»×㣬ÎÞ·¨È·¶¨ |
| A£® | ÎïÌåÊÜ2¸öµ¯Á¦ | B£® | ÎïÌåÊÜ1¸öµ¯Á¦ | C£® | ÎïÌåÊÜĦ²ÁÁ¦ | D£® | ÎïÌå²»ÊÜĦ²ÁÁ¦ |
| A£® | B£¼2T | B£® | B¡Ý0.5T | C£® | B£¼0.5T | D£® | B=2T |
| A£® | £¨1+$\frac{¡÷L}{L}$£©mg | B£® | £¨1+$\frac{¡÷L}{L}$£©£¨m+m0£©g | C£® | ¡÷Lmg | D£® | $\frac{¡÷L}{L}$£¨m+m0£©g |
| A£® | ÈçͼËùʾ£¬ÏßµÄÉ϶˹̶¨£¬Ï¶ËϵһСÇò£¬½«Ð¡ÇòÓëÏßÀÔÚͬһˮƽλÖúó´Ó¾²Ö¹¿ªÊ¼ÊÍ·ÅÖØÁ¦µÄ¹¦ÂÊ×î´óʱ°ÚÏßÓëˮƽ·½Ïò³É30¡ã½Ç | |
| B£® | ÈçͼËùʾ£¬ÔÚ³¤ÎªLµÄϸÏßϹÒÒ»ÖÊÁ¿ÎªmµÄСÇò£¬ÓÃˮƽºãÁ¦FÀСÇòÖ±µ½Ï¸Ï߯«ÀëÊúÖ±·½Ïò60¡ã½Ç£¬¸Ã¹ý³ÌÖÐÖØÁ¦Ëù×öµÄ¹¦ÓëˮƽºãÁ¦FÎÞ¹Ø | |
| C£® | ÓÐÒ»ÖÊÁ¿ÎªmµÄСÇò´©ÔÚ³¤LµÄ¹Ì¶¨Çá¸ËµÄ¶¥²¿£¬Çá¸ËÓëˮƽ·½Ïò³É¦È½Ç£¬Ð¡ÇòÓëÇá¸ËµÄ½Ó´¥Çé¿ö´¦´¦Ïàͬ£®ÈôÓɾ²Ö¹ÊÍ·ÅСÇò£¬Ð¡Çòµ½´ïÇá¸Ëµ×¶Ë£¬ËüËùÊÜÖØÁ¦×ö¹¦µÄ¹¦ÂÊPΪmg$\sqrt{2gLsin¦È}$ | |
| D£® | ÖÊÁ¿ÎªmµÄСÇòÒÔÒ»¶¨µÄ³õËÙ¶ÈбÅ×£¬ÖØÁ¦µÄ¹¦ÂÊÏȼõСµ½ÁãÔÙÔö´ó |