ÌâÄ¿ÄÚÈÝ
3£®Ëæ×ŹúÃñ¾¼ÃµÄ·¢Õ¹£¬Ð¡½Î³µÒÑÖð½¥×ß½ø¼ÒÍ¥£®Ð¡ÓêµÈ5λ¸ß¶þÄ꼶ͬѧ½«ËûÃǵÄÑо¿ÐÔѧϰ»î¶¯¿ÎÌâѡΪ¡°Ð¡½Î³µµÄ·¢Õ¹Ê·¡±£®ËûÃDzéÔĵ½Ä³ÐͺÅС½Î³µµÄÖÊÁ¿Îª1.5¡Á103kg£¬ÐÐÊ»ÖÐËùÊÜ×èÁ¦ºãÁ¦Îª100N£¬´Ó¾²Ö¹Æô¶¯£¬ÑØÖ±Ïß¾¹ý60s£¬Ëٶȿɴï30m/s£¨108km/h£©£¬Èô½«´Ë¹ý³Ì¿´×öÊÇÔȼÓËÙÖ±ÏßÔ˶¯£¬Çó¸ÃС½Î³µÔÚÕâ¶ÎÐÐÊ»¹ý³ÌÖУ¨1£©¼ÓËٶȵĴóС£»
£¨2£©ÐÐÊ»µÄ·³Ì£»
£¨3£©Êܵ½µÄÇ£ÒýÁ¦£®
·ÖÎö £¨1£©³µ×÷³öËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬ÓÉËÙ¶Èʱ¼ä¹«Ê½ÇóµÄ¼ÓËÙ¶È£»
£¨2£©ÓÉËÙ¶ÈÎ»ÒÆ¹«Ê½ÇóµÄÎ»ÒÆ
£¨3£©Í¨¹ýÊÜÁ¦·ÖÎö£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóÇ£ÒýÁ¦
½â´ð ½â£º£¨1£©ÓÉËÙ¶Èʱ¼ä¹«Ê½¿ÉµÃ
v=at
a=$\frac{v}{t}=\frac{30}{60}m/{s}^{2}=0.5m/{s}^{2}$
£¨2£©ÓÉËÙ¶ÈÎ»ÒÆ¹«Ê½µÃ
s=$\frac{{v}^{2}}{2a}=\frac{3{0}^{2}}{2¡Á0.5}m=900m$
£¨3£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖª
F-f=ma
F=ma+f=850N
´ð£º£¨1£©¼ÓËٶȵĴóСΪ0.5m/s2£»
£¨2£©ÐÐÊ»µÄ·³ÌΪ900m£»
£¨3£©Êܵ½µÄÇ£ÒýÁ¦Îª850N
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔ˶¯Ñ§¹«Ê½ºÍÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬¼ÓËÙ¶ÈÊÇÖмäÇÅÁº
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®Ò»Æ½ÐаåµçÈÝÆ÷³äµçºóÓëµçÔ´¶Ï¿ª£¬Èô½«Á½¼«°å¼ä¾àÀë¼õС£¬Ôò¸ÃµçÈÝÆ÷µÄ£¨¡¡¡¡£©
| A£® | µçÈݱäС£¬¼«°å¼äµçѹ±ä´ó | B£® | µçÈݱäС£¬¼«°å¼äµçѹ±äС | ||
| C£® | µçÈݱä´ó£¬¼«°å¼äµçѹ±ä´ó | D£® | µçÈݱä´ó£¬¼«°å¼äµçѹ±äС |
14£®ÔÚÌ«ÑôϵÖÐÓÐÒ»¿Å°ë¾¶ÎªRµÄÐÐÐÇ£¬ÈôÔÚ¸ÃÐÇÇò±íÃæÒ»³õËÙ¶Èv0ÊúÖ±ÏòÉÏÅ׳öÒ»ÎïÌ壬Ôò¸ÃÎïÌåÉÏÉýµÄ×î´ó¸ß¶ÈΪH£®ÒÑÖª¸ÃÎïÌåËùÊܵįäËûÁ¦ÓëÐÐÐǶÔËüµÄÍòÓÐÒýÁ¦Ïà±È½Ï¿ÉºöÂÔ²»¼Æ£®ÒýÁ¦³£Á¿ÎªG£®¸ù¾ÝÕâЩÌõ¼þ£¬¿ÉÒÔÇó³öµÄÎïÀíÁ¿ÊÇ£¨¡¡¡¡£©
| A£® | ¸ÃÐÐÐǵÄÃÜ¶È | B£® | ¸ÃÐÐÐǵÄ×ÔתÖÜÆÚ | ||
| C£® | ¸ÃÐÇÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶È | D£® | ¸ÃÐÐÐDZíÃæ¸½½üÔËÐеÄÎÀÐǵÄÖÜÆÚ |
11£®
ÈçͼËùʾ£¬ÖÊÁ¿ÎªM£¬³¤¶ÈΪlµÄС³µ¾²Ö¹ÔÚ¹â»¬Ë®Æ½ÃæÉÏ£¬ÖÊÁ¿ÎªmµÄСÎï¿é·ÅÔÚС³µµÄ×î×ó¶Ë£®ÏÖÓÃһˮƽºãÁ¦F×÷ÓÃÔÚСÎï¿éÉÏ£¬Ê¹Ëü´Ó¾²Ö¹¿ªÊ¼Ô˶¯£¬Îï¿éºÍС³µÖ®¼äµÄĦ²ÁÁ¦µÄ´óСΪFf£¬µ±Ð¡³µÔ˶¯µÄÎ»ÒÆÎªxʱ£¬Îï¿é¸ÕºÃ»¬µ½Ð¡³µµÄ×îÓÒ¶Ë£¬ÈôСÎï¿é¿ÉÊÓΪÖʵ㣬Ôò£¨¡¡¡¡£©
| A£® | Îï¿éÊܵ½µÄĦ²ÁÁ¦µÄÎï¿é×öµÄ¹¦ÓëС³µÊܵ½µÄĦ²ÁÁ¦¶ÔС³µ×ö¹¦µÄ´úÊýºÍΪÁã | |
| B£® | Õû¸ö¹ý³ÌÎï¿éºÍС³µ¼äĦ²Á²úÉúµÄÈÈÁ¿ÎªFtl | |
| C£® | С³µµÄÄ©¶¯ÄÜΪFtx | |
| D£® | Õû¸ö¹ý³ÌÎï¿éºÍС³µÔö¼ÓµÄ»úеÄÜΪF£¨x+l£© |
18£®
ÈçͼËùʾ£¬ÔÚ¾øÔµÆ½ÃæÉÏ·½´æÔÚ×Å×ã¹»´óµÄˮƽÏòÓÒµÄÔÈÇ¿µç³¡£¬´øµçºÉÁ¿Îª+qС½ðÊô¿éÒÔÒ»¶¨³õ¶¯ÄÜEk´ÓAµã¿ªÊ¼ÑØË®Æ½ÃæÏò×ó×öÖ±ÏßÔ˶¯£¬¾L³¤¶Èµ½´ïBµã£¬ËٶȱäΪÁ㣮´Ë¹ý³ÌÖУ¬½ðÊô¿éËðʧµÄ¶¯ÄÜÓÐ$\frac{3}{4}$ת»¯ÎªµçÊÆÄÜ£¬È¡AµãµçÊÆÎªÁ㣬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Ħ²ÁÁ¦´óСÊǵ糡Á¦µÄ$\frac{1}{4}$ | B£® | BµãµçÊÆÄÜΪ$\frac{3}{4}$Ek | ||
| C£® | Ôٴλص½Aµãʱ¶¯ÄÜΪ$\frac{3}{4}$Ek | D£® | BµãµçÊÆÎª$\frac{3{E}_{k}}{4q}$ |
5£®¾ö¶¨Æ½Å×ÎïÌåÂ䵨µãÓëÅ׳öµã¼äˮƽ¾àÀëµÄÒòËØÊÇ£¨¡¡¡¡£©
| A£® | ³õËÙ¶È | B£® | Å׳öʱÎïÌåµÄ¸ß¶È | ||
| C£® | Å׳öʱÎïÌåµÄ¸ß¶ÈºÍ³õËÙ¶È | D£® | ÒÔÉÏ˵·¨¶¼²»ÕýÈ· |
12£®¹ØÓÚ¿ªÆÕÀÕÐÐÐÇÔ˶¯¶¨ÂɵĹ«Ê½$\frac{{R}^{3}}{{T}^{2}}$=k£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | kÊÇÒ»¸öÓëÐÐÐÇÎ޹صÄÁ¿ | |
| B£® | ÈôµØÇòÈÆÌ«ÑôÔËתµÄ°ë³¤ÖáΪR£¬ÖÜÆÚΪT£¬ÔÂÇòÈÆµØÇòÔËתµÄ°ë³¤ÖáΪR1£¬ÖÜÆÚΪT1£¬Ôò$\frac{{R}^{3}}{{T}^{2}}$=$\frac{{{R}_{1}}^{3}}{{{T}_{1}}^{2}}$ | |
| C£® | T±íʾÐÐÐǵÄ×ÔתÖÜÆÚ | |
| D£® | T±íʾÐÐÐǵĹ«×ªÖÜÆÚ |
10£®¹ØÓÚÈËÔìµØÇòͬ²½Í¨Ñ¶ÎÀÐÇ£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ÎÀÐǶ¼´¦ÓÚͬһ³àµÀÆ½ÃæÉÏ | |
| B£® | ÎÀÐǵĹ«×ªÖÜÆÚºÍµØÇò×ÔתÖÜÆÚÏëµÄ | |
| C£® | ÎÀÐǵ½µØÇò±íµÄ¸ß¶ÈÊÇËæ»úµÄ | |
| D£® | ÎÀÐǵķ¢ÉäËٶȵÈÓÚ7.9km/s |