ÌâÄ¿ÄÚÈÝ
4£®Èçͼ£¨¼×£©Ëùʾ£¬Á½´øµÈÁ¿ÒìºÅµçºÉµÄƽÐнðÊô°åƽÐÐÓÚxÖá·ÅÖ㬰峤ΪL£¬Á½°å¼ä¾àÀëΪ2y0£¬½ðÊô°åµÄÓÒ²à¿íΪLµÄÇøÓòÄÚ´æÔÚÈçͼ£¨ÒÒ£©ËùʾÖÜÆÚÐԱ仯µÄ´Å³¡£¬´Å³¡µÄ×óÓұ߽çÓëxÖá´¹Ö±£®ÏÖÓÐÒ»ÖÊÁ¿Îªm£¬´øµçºÉÁ¿Îª+qµÄ´øµçÁ£×Ó£¬´ÓyÖáÉϵÄAµãÒÔËÙ¶Èv0ÑØxÖáÕý·½ÏòÉäÈëÁ½°åÖ®¼ä£¬·É³öµç³¡ºó´Óµã£¨L£¬0£©½øÈë´Å³¡ÇøÓò£¬½øÈëʱËÙ¶È·½ÏòÓëxÖá¼Ð½ÇΪ30¡ã£¬°ÑÁ£×Ó½øÈë´Å³¡µÄʱ¿Ì×öΪÁãʱ¿Ì£¬ÒÔ´¹Ö±ÓÚÖ½ÃæÏòÀï×÷Ϊ´Å³¡Õý·½Ïò£¬Á£×Ó×îºó´ÓxÖáÉÏ£¨2L£¬0£©µãÓëxÖáÕý·½Ïò³É30¡ã¼Ð½Ç·É³ö´Å³¡£¬²»¼ÆÁ£×ÓÖØÁ¦£®£¨1£©ÇóÁ£×ÓÔÚÁ½°å¼äÔ˶¯Ê±µç³¡Á¦¶ÔËüËù×öµÄ¹¦£»
£¨2£©¼ÆËãÁ½°å¼äµÄµçÊÆ²î²¢È·¶¨AµãµÄλÖã»
£¨3£©Ð´³ö´Å³¡ÇøÓò´Å¸ÐӦǿ¶ÈB0µÄ´óС¡¢´Å³¡±ä»¯ÖÜÆÚTÓ¦Âú×ãµÄ±í´ïʽ£®
·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàËÆÆ½Å×Ô˶¯£¬ËÙ¶ÈÆ«×ª½ÇÕýÇÐÖµÎªÎ»ÒÆÆ«×ª½ÇÕýÇÐÖµµÄ2±¶£¬Çó½â³öÄ©ËٶȺó¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇó½âµç³¡Á¦¶ÔËüËù×öµÄ¹¦£»
£¨2£©Á£×ÓÔڵ糡ÖÐ×öÀàËÆÆ½Å×Ô˶¯£¬ÒÑ֪ˮƽ·ÖÎ»ÒÆºÍÊúÖ±·ÖÎ»ÒÆ£¬¸ù¾Ý·ÖÎ»ÒÆ¹«Ê½ÁÐʽÇó½â¼´¿É£»
£¨3£©Á£×ÓÔڴų¡ÖÐÔÈËÙÔ²ÖÜÔ˶¯£¬»³ö¿ÉÄܵÄÔ˶¯¹ì¼££¬È»ºó½áºÏÅ£¶ÙµÚ¶þ¶¨Âɺͼ¸ºÎ¹ØÏµÁÐʽ·ÖÎö£®
½â´ð ½â£º£¨1£©ÉèÁ£×Ó¸Õ½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv£¬Ôò£º
v=$\frac{{v}_{0}}{cos30¡ã}$=$\frac{2\sqrt{3}}{3}{v}_{0}$
µç³¡Á¦¶ÔÁ£×ÓËù×öµÄ¹¦Îª£º
W=$\frac{1}{2}m{v}^{2}-\frac{1}{2}m{v}_{0}^{2}=\frac{1}{6}m{v}_{0}^{2}$
£¨2£©ÉèÁ£×Ó¸Õ½øÈë´Å³¡Ê±µÄÊúÖ±·ÖËÙ¶ÈΪv¡ä£¬Ôò£º
v¡ä=v0tan30¡ã=$\frac{\sqrt{3}}{3}{v}_{0}$
ˮƽ·½Ïò£ºL=v0t
ÊúÖ±·½Ïò£º$y=\frac{1}{2}v¡ät$
½âµÃ£ºy=$\frac{\sqrt{3}}{6}L$
µç³¡Á¦¶ÔÁ£×ÓËù×öµÄ¹¦£ºW=qEy
Á½°å¼äµÄµçѹU=2Ey0
½âµÃ£ºU=$\frac{2\sqrt{3}{y}_{0}m{v}_{0}^{2}}{3qL}$
£¨3£©ÓɶԳÆÐÔ¿ÉÖª£¬Á£×Ó´Óx=2Lµã·É³ö´Å³¡µÄËÙ¶È´óС²»±ä£¬·½ÏòÓëxÖá¼Ð½ÇΪ¦Á=¡À30¡ã£»
Ôڴų¡±ä»¯µÄ°ë¸öÖÜÆÚÄÚ£¬Á£×ӵį«×ª½ÇΪ2¦Á=60¡ã£»
¹Ê´Å³¡±ä»¯µÄ°ë¸öÖÜÆÚÄÚ£¬Á£×ÓÔÚxÖáÉϵÄÎ»ÒÆÎª£º
x=2Rsin30¡ã=R
Á£×Óµ½´ïx=2L´¦ÇÒËÙ¶ÈÂú×ãÉÏÊöÒªÇóÊÇ£º
nR=L R=$\frac{L}{n}$£¨n=1£¬2£¬3£¬¡£©
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУº
$qv{B}_{0}=m\frac{{v}^{2}}{R}$
½âµÃ£º
B0=$\frac{2\sqrt{3}nm{v}_{0}}{3qL}$£¨n=1£¬2£¬3£¬¡£©
Á£×ÓÔڱ仯´Å³¡µÄ°ë¸öÖÜÆÚÄÚÇ¡ºÃת¹ý$\frac{1}{6}$ÖÜÆÚ£¬Í¬Ê±Ôڴų¡ÖÐÔ˶¯µÄʱ¼äÊDZ仯´Å³¡°ë¸öÖÜÆÚµÄÕûÊý±¶£¬¿ÉʹÁ£×Óµ½´ïx=2L´¦ÇÒÂú×ãËÙ¶ÈÌâÉèÒªÇó£»
$\frac{1}{6}k{T}_{0}=k\frac{T}{2}$
${T}_{0}=\frac{2¦ÐR}{v}$![]()
½âµÃ£º
$T=\frac{\sqrt{3}¦ÐL}{3{v}_{0}}$£¨n=1£¬2£¬3£¬¡£©
µ±$\frac{T}{2}£¾\frac{1}{6}{T}_{0}$
T£¾$\frac{\sqrt{3}¦ÐL}{3{v}_{0}}$
´ð£º£¨1£©Á£×ÓÔÚÁ½°å¼äÔ˶¯Ê±µç³¡Á¦¶ÔËüËù×öµÄ¹¦Îª$\frac{1}{6}m{v}_{0}^{2}$£»
£¨2£©Á½°å¼äµÄµçÊÆ²îΪ$\frac{2\sqrt{3}{y}_{0}m{v}_{0}^{2}}{3qL}$£¬AµãµÄλÖÃ×ø±ê£¨0£¬$\frac{\sqrt{3}}{6}L$£©£»
£¨3£©´Å³¡ÇøÓò´Å¸ÐӦǿ¶ÈB0µÄ´óСB0=$\frac{2\sqrt{3}nm{v}_{0}}{3qL}$£¨n=1£¬2£¬3£¬¡£©¡¢´Å³¡±ä»¯ÖÜÆÚT£¾$\frac{\sqrt{3}¦ÐL}{3{v}_{0}}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£¬·ÖÀàËÆÆ½Å×Ô˶¯ºÍÔÈËÙÔ²ÖÜÔ˶¯½øÐзÖÎö£¬¹Ø¼üÊÇ»³ö¹ì¼££¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺͶ¯Äܶ¨ÀíÁÐʽ·ÖÎö£®
| A£® | ÍâÁ¦F¶Ô»îÈû×ö¹¦£¬¼×½«ÈÈÁ¿´«µÝ¸øÒÒ£¬¼×µÄÄÚÄÜÔö´ó | |
| B£® | ¼×´«ÈȸøÒÒ£¬ÒÒµÄÄÚÄÜÔö¼Ó | |
| C£® | ¼×ÆøÌåÓëÒÒÆøÌåÏà±È£¬¼×ÆøÌåÔÚµ¥Î»Ê±¼äÄÚÓë¸ô°åQÅöײµÄ·Ö×ÓÊýÒ»¶¨½ÏÉÙ | |
| D£® | ¼×ÆøÌåÓëÒÒÆøÌåÏà±È£¬¼×ÆøÌåÔÚµ¥Î»Ê±¼äÄÚÓë¸ô°åQÅöײµÄ·Ö×ÓÊýÒ»¶¨½Ï¶à |
| A£® | ÔÚ¢ò¡¢¢óÕâÁ½¸ö¹ìµÀÉÏ£¬ÎÀÐÇÔÚOµãµÄËÙ¶ÈÏàͬ | |
| B£® | ÔÚ¢ò¡¢¢óÕâÁ½¸ö¹ìµÀÉÏ£¬ÎÀÐÇÔÚOµãµÄ¼ÓËÙ¶ÈÏàͬ | |
| C£® | ÎÀÐÇÔÚQµãµÄ»úеÄÜСÓÚÆäÔÚPµãµÄ»úеÄÜ | |
| D£® | ÎÀÐÇÔÚQµãµÄ»úеÄÜ´óÓÚÆäÔÚPµãµÄ»úеÄÜ |
| A£® | ¿ªÆÕÀÕÈÏΪֻÓÐÔÚÒ»¶¨µÄÌõ¼þÏ£¬µ¯»ÉµÄµ¯Á¦²ÅÓ뵯»ÉµÄÐαäÁ¿³ÉÕý±È | |
| B£® | Å£¶ÙÈÏΪÔÚ×ã¹»¸ßµÄɽÉÏÒÔ×ã¹»´óµÄˮƽËÙ¶ÈÅ׳öÎïÌ壬ÎïÌå¾Í²»»áÔÙÂäµ½µØÇòÉÏ | |
| C£® | °ÂË¹ÌØ·¢Á˵ç´Å¸ÐÓ¦ÏÖÏ󣬲¢¼áÐŵçºÍ´ÅÖ®¼ä´æÔÚÒ»¶¨µÄÁªÏµ | |
| D£® | °²ÅàÊ×ÏÈÒýÈëµç³¡ÏߺʹŸÐÏߣ¬¼«´óµØ´Ù½øÁËËû¶Ôµç´ÅÏÖÏóµÄÑо¿ |
| A£® | ${\;}_{1}^{3}$H+${\;}_{1}^{2}$H¡ú${\;}_{2}^{4}$He+${\;}_{0}^{1}$nÊǺ˾۱䷴Ӧ | |
| B£® | ±È½áºÏÄÜÔ½´ó£¬Ô×ÓºËÖкË×Ó½áºÏµÄÔ½²»Àι̣¬Ô×ÓºËÔ½²»Îȶ¨ | |
| C£® | ¦ÁÉäÏß¡¢¦ÂÉäÏß¡¢¦ÃÉäÏß¶¼ÊǸßËÙÔ˶¯µÄ´øµçÁ£×ÓÁ÷ | |
| D£® | ´Ón=4Äܼ¶Ô¾Ç¨µ½n=3Äܼ¶±È´Ón=3Äܼ¶Ô¾Ç¨µ½n=2Äܼ¶·øÉä³ö¹â×ӵįµÂÊС |
| A£® | ×î¸ßµãÒ»¶¨ÔÚ0µãµÄÕýÉÏ·½ | |
| B£® | ×î¸ßµã¿ÉÄÜÔÚ0µãµÄÓÒÉÏ·½ | |
| C£® | 0µãÓë×î¸ßµãÖ®¼äµÄµçÊÆ²î¿ÉÄÜΪÁã | |
| D£® | ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈE=$\frac{3mg}{q}$ |