题目内容
2.一矩形线圈在匀强磁场中绕垂直磁场方向的轴匀速转动,当线圈通过中性面时,以下说法错误的是( )| A. | 通过线圈的磁通量变化率达到最大值 | |
| B. | 通过线圈的磁通量达到最大值 | |
| C. | 线圈平面与磁感线方向垂直 | |
| D. | 线圈中的感应电动势为零 |
分析 矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生正弦式电流.在中性面时,线圈与磁场垂直,磁通量最大,感应电动势为零.线圈每通过中性面一次,电流方向改变一次.
解答 解:AB、在中性面时,线圈与磁场垂直,磁通量最大.在中性面时,没有边切割磁感线,感应电动势为零,通过线圈的磁通量变化率为零.故BCD正确,A错误.
本题选错误的,故选:A
点评 本题考查正弦式电流产生原理的理解能力,抓住两个特殊位置的特点:线圈与磁场垂直时,磁通量最大,感应电动势为零;线圈与磁场平行时,磁通量为零,感应电动势最大.
练习册系列答案
相关题目
12.平抛运动是( )
| A. | 加速度不变的运动 | B. | 速度方向不变的运动 | ||
| C. | 速度大小不变的运动 | D. | 位移均匀变化的运动 |
13.关于做曲线运动的物体,以下说法正确的是( )
| A. | 速度一定是恒定不变的 | B. | 加速度一定是恒定不变的 | ||
| C. | 速率一定是恒定不变的 | D. | 受到的合外力一定不为零 |
10.如果设行星的质量为m,绕太阳运动的线速度为v,公转周期为T,轨道半径为r,太阳的质量为M,则下列说法错误的是( )
| A. | 教材在探究太阳与行星的引力大小F的规律时,引入了公式F=m$\frac{{v}^{2}}{r}$,这个关系式实际上是牛顿第二定律 | |
| B. | 教材在探究太阳与行星的引力大小F的规律时,引入了公式v=$\frac{2πr}{T}$,这个这个关系式实际上是匀速圆周运动的一个公式 | |
| C. | 教材在探究太阳与行星间的引力大小F的规律时,引入了公式$\frac{{r}^{3}}{{T}^{2}}$=k,这个公式实质上是开普勒第三定律,是不可以在实验室中得到验证的 | |
| D. | 教材在探究太阳与行星间的引力大小F的规律时,得到的关系式F∝$\frac{m}{{r}^{2}}$之后,又借助相对运动的知识(即:也可理解为太阳绕行星做匀速圆周运动)得到F∝$\frac{M}{{r}^{2}}$,最终关系式用数学方法合并成F∝$\frac{Mm}{{r}^{2}}$ |
17.在太阳系中有一颗行星的半径为R,若在该星球表面以初速度V0竖直上抛出一物体,则该物体上升的最大高度为H.已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计,万有引力常量为G.则根据这些条件,可以求出的物理量是( )
| A. | 该行星的自转周期 | B. | 该行星的密度 | ||
| C. | 该星球的第一宇宙速度 | D. | 绕该行星运行的卫星的最小周期 |
7.某同学通过Internet查询到“神舟”六号飞船在圆形轨道上运行一周的时间约为90分钟,他将这一信息与地球同步卫星进行比较,由此可知( )
| A. | “神舟”六号在圆形轨道上运行时的向心加速度比地球同步卫星大 | |
| B. | “神舟”六号在圆形轨道上运行时的速率比地球同步卫星大 | |
| C. | “神舟”六号在圆形轨道上运行时离地面的高度比地球同步卫星高 | |
| D. | “神舟”六号在圆形轨道上运行时的角速度比地球同步卫星小 |
9.
火车在倾斜的轨道上转弯如图所示,弯道的倾角为θ,半径为r,则火车在转弯时车轮与铁轨无侧向压力的速率是(设转弯半径水平)( )
| A. | $\sqrt{grsinθ}$ | B. | $\sqrt{grcosθ}$ | C. | $\sqrt{grtanθ}$ | D. | $\sqrt{\frac{gr}{tanθ}}$ |
9.
如图所示,A,B,C,D是真空中一正四面体的四个顶点,现在在A,B两点分别固定电荷量为+q,-q的两个点电荷,则关于C,D两点的磁场和电势,下列说法正确的是( )
| A. | C,D两点的电场强度不同,电势相同 | |
| B. | C,D两点的电场强度相同,电势不同 | |
| C. | 将一正电荷从C点移到D点,电场力对该正电荷先做正功,然后做负功 | |
| D. | 将一正电荷从C点移到D点,电场力对该正电荷先做负功,然后做正功 |