ÌâÄ¿ÄÚÈÝ
15£®Òò²âÊÔÐèÒª£¬Ò»Á¾Æû³µÔÚijÀ×´ï²âËÙÇøÑØÆ½Ö±Â·Ãæ´Ó¾²Ö¹¿ªÊ¼ÔȼÓËÙÒ»¶Îʱ¼äµ½t1ʱ¿Ì£¬t1ʱ¿Ì½ô½Ó×Å×öÔÈËÙÖ±ÏßÔ˶¯£¬¾1sʱ¼äÓÖ½Ó×Å×öÔÈËÙÔ˶¯Ö±µ½×îºóÍ£Ö¹£®Ï±íÖиø³öÁËÀ×´ï²â³öµÄ²¿·Öʱ¿Ì¶ÔÓ¦µÄÆû³µËÙ¶ÈÊýÖµ£®Çó£º| ʱ¼ä/s | 0 | 1.0 | 2.0 | 3.0 | 6.0 | 7.0 | 8.0 |
| ËÙ¶È/£¨m•s-1£© | 0 | 3.0 | 6.0 | 9.0 | 9.0 | 7.0 | 5.0 |
£¨2£©Æû³µÔÚ¸ÃÇøÓòÐÐÊ»µÄ×ÜÎ»ÒÆx=£¿
·ÖÎö £¨1£©¸ù¾Ý¼ÓËٶȶ¨Òåʽ¼ÆËã¿ÉµÃ¼ÓËÙÓë¼õËٵļÓËٶȵĴóС£¬È»ºó½áºÏËÙ¶ÈÖ®¼äµÄ¹ØÏµ¼´¿ÉÇó³ö¼ÓËٵļÓËÙ£»
£¨2£©Ê¹ÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ¹«Ê½ÏÈÇó³ö¼ÓËٶεÄÎ»ÒÆ£¬ÔÙ¸ù¾Ý$\overline{V}$=$\frac{{V}_{0}{+V}_{t}}{2}$Çó³ö¼õËÙ¶ÎµÄÆ½¾ùËÙ¶È£¬È»ºóÇó³ö¼õËٶεÄÎ»ÒÆ£¬×îºóÇóºÍ¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉͼ±í¿ÉÖªÔÚ0-4sÄÚÔȼÓËÙ£¬4-10sÄÚÔȼõËÙ£¬¸ù¾Ýa=$\frac{{V}_{t}{-V}_{0}}{t}$µÃÔȼÓËٵļÓËÙ¶ÈΪ£ºa1=$\frac{6.0-0}{2.0-0}$m/s2=3.0m/s2£¬
ÔȼõËٵļÓËÙ¶ÈΪ£ºa2=$\frac{5.0-7.0}{8.0-7.0}$m/s2=-2m/s2£»
Éè¼ÓËÙµÄʱ¼äΪt£¬ÔòtÃëÄ©µÄËÙ¶ÈΪ£ºvt=a1t
µÚ7.0sÄ©µÄËÙ¶ÈΪ£ºv7=vt+a2£¨7-t£©
´úÈëÊý¾ÝµÃ£ºt=4.2s
£¨2£©¼ÓËٽ׶εÄÎ»ÒÆÎª£º${x}_{1}=\frac{1}{2}{a}_{1}{t}^{2}=\frac{1}{2}¡Á3.0¡Á4£®{2}^{2}=26.46$m
¼õËÙ½×¶ÎµÄÆ½¾ùËÙ¶ÈΪ£º$\overline{v}$=$\frac{{V}_{0}{+V}_{t}}{2}$=$\frac{at+{v}_{t}}{2}=\frac{3¡Á4.2+5.0}{2}=8.8$m/x
µÃ¼õËٽ׶εÄÎ»ÒÆÎª£º${x}_{2}=\overline{v}•£¨8.0-t£©$=8.8¡Á£¨8-4.2£©=33.44m£®
ËùÒÔ×ÜÎ»ÒÆÎª£ºx=x1+x2=26.46+33.44=59.9m
´ð£º£¨1£©Æû³µÔȼÓËÙÖ±ÏßÔ˶¯µÄʱ¼äÊÇ4.2s£»
£¨2£©Æû³µÔÚ¸ÃÇøÓòÐÐÊ»µÄ×ÜÎ»ÒÆÊÇ59.9m£®
µãÆÀ ±¾Ì⿼²é¼ÓËٶȵ͍ÒåʽºÍƽ¾ùËٶȵļÆË㣬עÒâ¼ÆËãʱËٶȱ仯Á¿ºÍʱ¼äµÄ¶ÔÓ¦£®
| A£® | $\frac{1}{2}{F_1}$ | B£® | $\frac{{\sqrt{3}}}{3}{F_1}$ | C£® | $\frac{{\sqrt{3}}}{2}{F_1}$ | D£® | $\sqrt{3}{F_1}$ |
| A£® | v0 | B£® | 2v0 | ||
| C£® | $\frac{qEL}{md{v}_{0}}$ | D£® | $\sqrt{{v}_{0}^{2}+\frac{{q}^{2}{E}^{2}{L}^{2}}{{m}^{2}{d}^{2}{v}_{0}^{2}}}$ |