ÌâÄ¿ÄÚÈÝ
9£®Ä³Í¬Ñ§ÔÚ¡°Ì½¾¿Ð¡³µËÙ¶ÈËæÊ±¼ä±ä»¯µÄ¹æÂÉ¡±µÄʵÑéÖУ¬Óôòµã¼ÆÊ±Æ÷¼Ç¼Á˱»Ð¡³µÍ϶¯µÄÖ½´øµÄÔ˶¯Çé¿ö£¬ÔÚÖ½´øÉÏÈ·¶¨µÄA¡¢B¡¢C¡¢D¡¢E¡¢F¡¢G¹²7¸ö¼ÆÊýµã£¬ÆäÏàÁÚµã¼äµÄ¾àÀëÈçͼ1Ëùʾ£¬Ã¿Á½¸öÏàÁÚ¼ÆÊýµãÖ®¼äµÄʱ¼ä¼ä¸ôΪ0.10s£®¢ÙÊÔ¸ù¾ÝÖ½´øÉϸ÷¸ö¼ÆÊýµã¼äµÄ¾àÀ룬¼ÆËã³ö´òB¡¢C¡¢D¡¢E¡¢FÎå¸öµãʱµÄ˲ʱËÙ¶È£¬²¢½«¸÷¸öËÙ¶ÈÖµÌîÈëÏÂʽ£¨ÊýÖµ±£Áôµ½Ð¡ÊýµãºóµÚÈý룩vB=0.400m/s£¬vC=0.479m/s£¬vD=0.560m/s£¬vE=0.640m/s£¬vF=0.685m/s£®
¢Ú½«B¡¢C¡¢D¡¢E¡¢F¸÷¸öʱ¿ÌµÄ˲ʱËٶȱêÔÚͼ2ËùʾµÄ×ø±êÏßÉÏ£¬²¢»³öС³µµÄ˲ʱËÙ¶ÈËæÊ±¼ä±ä»¯µÄ¹ØÏµÍ¼Ïߣ®
·ÖÎö ¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ¹«Ê½¡÷x=aT2¿ÉÒÔÇó³ö¼ÓËٶȵĴóС£¬¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯ÖÐʱ¼äÖеãµÄËٶȵÈÓڸùý³ÌÖÐµÄÆ½¾ùËÙ¶È£»¸ù¾ÝÇóµÃµÄËÙ¶È£¬½øÐÐÃèµã£¬×÷ͼ¼´¿É£®
½â´ð ½â£º¢Ù¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£º
vB=$\frac{{x}_{AC}}{2T}$=$\frac{0.0362+0.0438}{0.2}$=0.400m/s
vC=$\frac{{x}_{BD}}{2T}$=$\frac{0.0438+0.0520}{0.2}$=0.479m/s
vD=$\frac{{x}_{CE}}{2T}$=$\frac{0.0520+0.0599}{0.2}$=0.560m/s
vE=$\frac{{x}_{DF}}{2T}$=$\frac{0.0599+0.0680}{0.2}$=0.640m/s
vF=$\frac{{x}_{EG}}{2T}$=$\frac{0.0680+0.0762}{0.2}$=0.685m/s
¢Ú½«B¡¢C¡¢D¡¢E¡¢F¸÷¸öʱ¿ÌµÄ˲ʱËÙ¶È ±êÔÚÈçͼ2ËùʾµÄ×ø±êÖ½ÉÏ£¬»³öС³µµÄ˲ʱËÙ¶ÈËæÊ±¼ä±ä»¯µÄ¹ØÏµÍ¼ÏßÈçͼ£º![]()
¹Ê´ð°¸Îª£º¢Ù0.400£¬0.479£¬0.560£¬0.640s£¬0.685£»¢ÚͼÈçÉÏËùʾ£®
µãÆÀ ÒªÌá¸ßÓ¦ÓÃÔȱäËÙÖ±ÏߵĹæÂÉÒÔ¼°ÍÆÂÛ½â´ðʵÑéÎÊÌâµÄÄÜÁ¦£¬ÔÚÆ½Ê±Á·Ï°ÖÐÒª¼ÓÇ¿»ù´¡ÖªÊ¶µÄÀí½âÓëÓ¦Óã¬×¢ÒâÃèµãºóƽ»¬Á¬Ï߸÷µã£¬ÇÒµ±ÐÄÆðµã²»ÊÇ0¿ªÊ¼µÄ£®
| A£® | СÇòµÄ¼ÓËÙ¶ÈÒ»Ö±ÔÚÔö´ó | |
| B£® | ºãÁ¦F×öµÄ¹¦µÈÓÚµ¯»Éµ¯ÐÔÊÆÄܵÄÔö¼ÓÁ¿ | |
| C£® | СÇòµÄ¶¯ÄÜ×î´óʱ£¬µ¯»Éµ¯Á¦ÓëF´óСÏàµÈ | |
| D£® | µ¯»ÉµÄµ¯ÐÔÊÆÄÜ×î´óʱ£¬Ð¡ÇòµÄ¶¯ÄÜΪ0 |
| A£® | ÔÚA¡¢BÔ˶¯µÄ¹ý³ÌÖУ¬ÏµÍ³»úеÄÜÊØºã | |
| B£® | AÇòϽµ£¬BÇòÉÏÉý£¬BÇò¿ÉÉÏÉýÖÁÍëÁíÒ»²à±ßÔµ´¦ | |
| C£® | AÇòϽµ£¬BÇòÉÏÉý£¬BÇò¿ÉÉÏÉýµÄ×î¸ßµãÓëÍë±ßÔµµÄ¸ß¶È²îΪ$\frac{3}{5}$R | |
| D£® | ÔÚAϽµ¹ý³ÌÖУ¬A¡¢B¼äÇá¸ËÒ»Ö±¶ÔA×ö¸º¹¦ |
| A£® | ³åÁ¿µÄ·½Ïò£¬¾ÍÊÇÎïÌåÔ˶¯µÄ·½Ïò | |
| B£® | ³åÁ¿·´Ó³ÁËÁ¦µÄ×÷ÓöÔʱ¼äµÄÀÛ»ýЧӦ£¬ÊÇÒ»¸ö±êÁ¿ | |
| C£® | Ö»ÒªÎïÌåÔ˶¯µÄËÙ¶È´óС²»±ä£¬ÎïÌåµÄ¶¯Á¿Ò²±£³Ö²»±ä | |
| D£® | ÖÊÁ¿Ò»¶¨µÄÎïÌ壬¶¯Á¿±ä»¯Ô½´ó£¬¸ÃÎïÌåµÄËٶȱ仯һ¶¨Ô½´ó |
| A£® | ×ϹâÕÕÉäʱ | B£® | ºì¹âÕÕÉäʱ | ||
| C£® | ¸Ä±äÕÕÉä¹âÑÕÉ«µÄ¹ý³ÌÖÐ | D£® | ¸÷ÖÖÉ«¹â¾ù¿ÉÒÔ²úÉú¸ÐÓ¦µçÁ÷ |
| A£® | FA£ºFB=1£º1 | B£® | FA£ºFB=1£ºtan¦È | C£® | FA£ºFB=cos2¦È£º1 | D£® | FA£ºFB=sin2¦È£º1 |
| A£® | ÎÀÐǵļÓËÙ¶ÈΪ$\frac{{4¦Ð}^{2}}{T^2}$£¨R+r£© | |
| B£® | ÎÀÐÇÈÆÔÂÇò×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏßËÙ¶ÈΪ$\frac{2¦ÐR}{T}$ | |
| C£® | ÔÂÇòµÄÖÊÁ¿Îª$\frac{{{4¦Ð}^{2}{r}^{3}}}{{GT}^{2}}$ | |
| D£® | ÔÂÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{{{4¦Ð}^{2}{r}^{3}}}{{{T}^{2}{R}^{2}}}$ |