ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬»¬¿éÖÊÁ¿Îªm£¬ÓëˮƽµØÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.1£¬ËüÒÔv0=3
µÄ³õËÙ¶ÈÓÉAµã¿ªÊ¼ÏòBµã»¬ÐУ¬AB=5R£¬²¢»¬ÉϹ⻬µÄ°ë¾¶ÎªRµÄ1/4Ô²»¡BC£¬ÔÚCµãÕýÉÏ·½ÓÐÒ»ÀëCµã¸ß¶ÈҲΪRµÄÐýתƽ̨£¬ÑØÆ½Ì¨Ö±¾¶·½Ïò¿ªÓÐÁ½¸öÀëÖáÐľàÀëÏàµÈµÄС¿×P¡¢Q£¬ÐýתʱÁ½¿×¾ùÄÜ´ïµ½CµãµÄÕýÉÏ·½£® Çó£º
£¨1£©»¬¿é¸Õµ½B ´¦µÄËÙ¶È£»
£¨2£©»¬¿é»¬¹ýCµã£¬´©¹ýС¿×PʱµÄËÙ¶È£»
£¨3£©Èô»¬¿é´©¹ýP¿×ºó£¬ÓÖÇ¡ÄÜ´ÓQ¿×ÂäÏ£¬Ôòƽ̨ת¶¯µÄ½ÇËٶȦØÓ¦Âú×ãʲôÌõ¼þ£¿
| gR |
£¨1£©»¬¿é¸Õµ½B ´¦µÄËÙ¶È£»
£¨2£©»¬¿é»¬¹ýCµã£¬´©¹ýС¿×PʱµÄËÙ¶È£»
£¨3£©Èô»¬¿é´©¹ýP¿×ºó£¬ÓÖÇ¡ÄÜ´ÓQ¿×ÂäÏ£¬Ôòƽ̨ת¶¯µÄ½ÇËٶȦØÓ¦Âú×ãʲôÌõ¼þ£¿
£¨1£©É軬¿éÖÁBµãʱËÙ¶ÈΪvB£¬¶Ô»¬¿éÓÉAµãµ½BµãÓ¦Óö¯Äܶ¨ÀíÓУº
-¦Ìmg5R=
mvB2-
mv02
½âµÃ£ºvB2=8gR
vB=2
£¨2£©»¬¿é´ÓBµã¿ªÊ¼Ô˶¯ºó»ú¹¹ÄÜÊØºã£¬É軬¿éµ½´ïP´¦Ê±ËÙ¶ÈΪvp£¬Ôò£º
mvB2=
mvp2+mg2R
½âµÃ£ºvp=2
£¨3£©»¬¿é´©¹ýP¿×ºóÔٻص½Æ½Ì¨µÄʱ¼ä£ºt=
=4
ÒªÏëʵÏÖÌâÊö¹ý³Ì£¬ÐèÂú×㣺¦Øt=£¨2n+1£©¦Ð
ÒÔÉÏÁ½Ê½ÁªÁ¢µÃ£º¦Ø=
£¨n=0£¬1£¬2¡£©
´ð£º£¨1£©»¬¿é¸Õµ½B´¦µÄËÙ¶È2
£®
£¨2£©»¬¿é»¬¹ýCµã£¬´©¹ýС¿×PʱµÄËÙ¶Èvp=2
£®
£¨3£©Èô»¬¿é´©¹ýP¿×ºó£¬ÓÖÇ¡ÄÜ´ÓQ¿×ÂäÏ£¬Ôòƽ̨ת¶¯µÄ½ÇËٶȦØÓ¦Âú×ã¦Ø=
£¨n=0£¬1£¬2¡£©£®
-¦Ìmg5R=
| 1 |
| 2 |
| 1 |
| 2 |
½âµÃ£ºvB2=8gR
vB=2
| 2gR |
£¨2£©»¬¿é´ÓBµã¿ªÊ¼Ô˶¯ºó»ú¹¹ÄÜÊØºã£¬É軬¿éµ½´ïP´¦Ê±ËÙ¶ÈΪvp£¬Ôò£º
| 1 |
| 2 |
| 1 |
| 2 |
½âµÃ£ºvp=2
| gR |
£¨3£©»¬¿é´©¹ýP¿×ºóÔٻص½Æ½Ì¨µÄʱ¼ä£ºt=
| 2vp |
| g |
|
ÒªÏëʵÏÖÌâÊö¹ý³Ì£¬ÐèÂú×㣺¦Øt=£¨2n+1£©¦Ð
ÒÔÉÏÁ½Ê½ÁªÁ¢µÃ£º¦Ø=
| ¦Ð(2n+1) |
| 4 |
|
´ð£º£¨1£©»¬¿é¸Õµ½B´¦µÄËÙ¶È2
| 2gR |
£¨2£©»¬¿é»¬¹ýCµã£¬´©¹ýС¿×PʱµÄËÙ¶Èvp=2
| gR |
£¨3£©Èô»¬¿é´©¹ýP¿×ºó£¬ÓÖÇ¡ÄÜ´ÓQ¿×ÂäÏ£¬Ôòƽ̨ת¶¯µÄ½ÇËٶȦØÓ¦Âú×ã¦Ø=
| ¦Ð(2n+1) |
| 4 |
|
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿