题目内容
2.| A. | a点的电势比b点的电势高 | |
| B. | 粒子在c点的加速度为零 | |
| C. | 粒子从a到时c电势能不断增加 | |
| D. | 粒子从a到b克服电场力做功大于从b到c克服电场力做功 |
分析 质点只受电场力作用,根据运动轨迹可知电场力指向运动轨迹的内侧即斜向左上方,由于质点带负电,因此电场线方向也指向右下方;电势能变化可以通过电场力做功情况判断;电场线和等势线垂直,且等势线密的地方电场线密,电场场强大
解答 解:A、电荷所受电场力指向轨迹内侧,由于电荷带负电,因此电场线指向右下方,沿电场线电势降低,故a等势线的电势最高,c点的电势最低,故A正确
B、相邻等势面之间的电势差相等,从左向右相邻等势面之间距离变大,可知电场变弱,带电粒子左向右运动时,电场力变小,加速度减小,故B错误;
C、粒子从a到时c,电场力做负功,电势能增大,故C正确;![]()
D、电场力做功W=qU,因相邻面间的电势差相等,故粒子从a到b克服电场力做功等于从b到c克服电场力做功,故D错误
故选:AC
点评 解决这类带电粒子在电场中运动的思路是:根据运动轨迹判断出所受电场力方向,然后进一步判断电势、电场强度、电势能、动能等物理量的变化.
练习册系列答案
相关题目
13.下列说法中正确的是( )
| A. | α粒子散射实验是卢瑟福建立原子核式结构模型的重要依据 | |
| B. | 光电效应和康普顿效应深入揭示了光的粒子性,前者表明光子具有能量,后者表明光子除了具有能量外还具有动量 | |
| C. | 放射性元素的衰变快慢不受外界温度、压强的影响,但如果以单质形式存在,其衰变要比以化合物形式存在快 | |
| D. | 正负电子对湮灭技术是一项较新的核物理技术.一对正负电子对湮灭后生成光子的事实说明质量守恒定律是有适用范围的 |
10.
如图所示,长为L、倾角为θ的光滑绝缘斜面处于电场中,一带电量为+q,质量为m的小球,以初速度v0从斜面底端的A点开始沿斜面上滑,当达到斜面顶端的B点时,速度仍为v0,则( )
| A. | A、B两点间的电势差一定等于$\frac{mgLsinθ}{q}$ | |
| B. | 小球在B点的电势能一定大于A点的电势能 | |
| C. | 若电场是匀强电场,则该电场的强度的最大值一定为$\frac{mg}{q}$ | |
| D. | 若该电场是斜面中点正上方某点 C的点电荷Q产生的,则Q一定是负电荷 |
17.
用如图所示的装置研究光电效应现象.所用光子能量为2.75eV的光照射到光电管上时发生了光电效应,电流表G的示数不为零;移动变阻器的触点c,发现当电压表的示数大于或等于1.7V时,电流表示数为0,则下列说法正确的是( )
| A. | 光电管阴极的逸出功为1.05eV | |
| B. | 电键S断开后,有电流流过电流表G | |
| C. | 光电子的最大初动能为1.05eV | |
| D. | 保证入射光强度相同,改用能量为2.5eV的光子照射,电流表G也有电流,但电流较大 | |
| E. | 当滑动触头向a端滑动时,反向电压越大,电流越大 |
7.一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度的变化如图所示,则此过程中( )

| A. | 气体的密度增大 | B. | 气体对外界做功 | ||
| C. | 气体从外界吸收了热量 | D. | 气体分子的平均动能增大 |
14.
在光滑水平桌面中央固定一边长为0.3m的小正三棱柱abc,俯视如图.长度为L=1m的细线,一端固定在a点,另一端拴住一个质量为m=0.5kg、不计大小的小球.初始时刻,把细线拉直在ca的延长线上,并给小球以v0=2m/s且垂直于细线方向的水平速度,由于光滑棱柱的存在,细线逐渐缠绕在棱柱上.不计细线与三棱柱碰撞过程中的能量损失,已知细线所能承受的最大张力为7N,小球从图示位置运动至细线刚好断裂时( )
| A. | 小球的速度大小保持不变 | B. | 小球的速度逐渐减小 | ||
| C. | 小球运动时间为0.7πs | D. | 小球位移为0.9 m |
3.某物体沿直线运动,其v-t图象如图所示,则下列说法中正确的是( )

| A. | 第3s内和第5s内速度方向相反 | B. | 第3s内和第5s内加速度方向相反 | ||
| C. | 第5s内速度和加速度方向相同 | D. | 第7s内速度和加速度方向相同 |