题目内容

1.如图所示,轻质弹簧的一端固定在竖直墙面上,另一端拴接一小物块,小物块放在动摩擦因数为μ的水平面上,当小物块位于O点时弹簧处于自然状态.现将小物块向右移到a点,然后由静止释放,小物块最终停在O点左侧的b点(图中未画出),以下说法正确的是(  )
A.Ob之间的距离小于Oa之间的距离
B.从O至b的过程中,小物块的加速度逐渐减小
C.小物块在O点时的速度最大
D.从a到b的过程中,弹簧弹性势能的减少量等于小物块克服摩擦力所做的功

分析 分别对物块在a点和b点受力分析,求出弹力与最大静摩擦力的关系,再结合胡克定律比较Ob之间的距离和Oa之间的距离的大小,根据牛顿第二定律分析从O到b的过程中加速度的变化情况,当加速度等于0时,速度最大,此时弹簧弹力等于滑动摩擦力,根据能量守恒定律分析D选项即可.

解答 解:A、小物块在a点时,弹簧弹力大于最大静摩擦力,即kxoa>fmax,静止在b点,则在b点,弹簧弹力小于最大静摩擦力,则有kxob<fmax,故xob<xoa,故A正确;
B、从O到b的过程中,根据牛顿第二定律得:a=$\frac{-kx-μmg}{m}$,弹力逐渐增大,则加速度逐渐增大,故B错误;
C、物块从a向b先做加速运动,后做减速运动,当加速度等于0时,速度最大,此时弹簧弹力等于滑动摩擦力,不在O点,故C错误;
D、从a到b的过程中,初末动能都为零,根据能量守恒定律可知,弹簧弹性势能的减少量等于小物块克服摩擦力所做的功,故D正确.
故选:AD

点评 本题主要考查了牛顿第二定律、胡克定律、能量守恒定律的直接应用,要求同学们能正确分析物块的运动情况和受力情况,知道当加速度等于0时,速度最大,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网