ÌâÄ¿ÄÚÈÝ
9£®£¨1£©Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯¹ìµÀ°ë¾¶¼°¾PµãʱµÄËÙ¶È·½Ïò£»
£¨2£©´Å³¡ÇøÓò¢òµÄ´Å¸ÐӦǿ¶È´óС¼°Íâ±ß½çµÄ°ë¾¶£®
·ÖÎö £¨1£©Á£×Ó½øÈë´Å³¡¢ñ×öÔ²ÖÜÔ˶¯£¬Óɼ¸ºÎ¹ØÏµÇó³ö¹ì¼£°ë¾¶£¬¸ù¾ÝͼÏóµÃ³öÁ£×Ó¾PµãµÄËÙ¶È·½Ïò£»
£¨2£©ÔÚ»·ÐÎÇøÓò¢òÖУ¬µ±Á£×ÓµÄÔ˶¯¹ì¼£ÓëÍâÔ²ÏàÇУ¬»³ö¹ì¼££¬Óɼ¸ºÎ¹ØÏµÇó½â¹ì¼£°ë¾¶£¬ÔÙÇó½âB2µÄ´óС£®
½â´ð
½â£º£¨1£©ÉèÁ£×ÓÔÚÇøÓò¢ñÄÚ¹ìµÀ°ë¾¶Îªr1£¬ÔòÓÉqv0B0=m$\frac{v_0^2}{r_1}$¿ÉÖª£º
r1=$\frac{{m{v_0}}}{{q{B_0}}}$=R1
ÓÉͼ֪£¬Á£×Ó¾PµãµÄËÙ¶ÈÑØxÖáÕý·½Ïò£®
£¨2£©Éè´Å³¡ÇøÓò¢òµÄ´Å¸ÐӦǿ¶È´óСΪB£¬Íâ±ß½çµÄ°ë¾¶ÎªR£¬Á£×ÓÔÚÇøÓò¢òÖеĹìµÀ°ë¾¶Îªr2£¬Èçͼ£¬Óɼ¸ºÎ¹ØÏµÖª£º${r_2}=\frac{{\sqrt{3}}}{3}{R_1}$
ÓÖ${r_2}=\frac{{m{v_0}}}{qB}$
ÔòB=$\sqrt{3}{B_0}$
Óɼ¸ºÎ¹ØÏµµÃ$R=2{r_2}+{r_2}=3{r_2}=\sqrt{3}{R_1}$
´ð£º£¨1£©Á£×ÓÔÚÇøÓò¢ñÖÐÔ˶¯¹ìµÀ°ë¾¶ÎªR1£¬¾PµãʱµÄËÙ¶È·½ÏòÑØxÖáÕý·½Ïò£»
£¨2£©´Å³¡ÇøÓò¢òµÄ´Å¸ÐӦǿ¶È´óСΪ$\sqrt{3}{B}_{0}$£¬Íâ±ß½çµÄ°ë¾¶Îª$\sqrt{3}{R}_{1}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕ´øµçÁ£×ÓÔÚÓнç´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£¬ÈçºÎÈ·¶¨Ô²ÐÄ¡¢°ë¾¶£¬»³öÔ˶¯¹ì¼££¬²¢ÄܽáºÏ¼¸ºÎ¹ØÏµÇó½â£¬ÄѶÈÊÊÖУ®
| A£® | µç³¡Ç¿¶ÈΪÁãµÄµØ·½£¬µçÊÆÒ²ÎªÁã | |
| B£® | µçÊÆ½µÂäµÄ·½Ïò¾ÍÊǵ糡ǿ¶ÈµÄ·½Ïò | |
| C£® | Ëæ×ŵ糡ǿ¶ÈµÄ´óСÖð½¥¼õС£¬µçÊÆÒ²Öð½¥½µµÍ | |
| D£® | µç³¡Ç¿¶ÈµÄ·½Ïò´¦´¦ÓëµÈÊÆÃæ´¹Ö± |
| A£® | ´ËÁв¨µÄÖÜÆÚΪT=0.4s | |
| B£® | ÖʵãE´ËʱµÄÕýÑØyÖáÕýÏòÕñ¶¯£¬ÇÒËÙ¶È×î´ó | |
| C£® | ÖʵãIµÄÆðÕñ·½ÏòÑØyÖḺ·½Ïò | |
| D£® | µ±t=5.1sʱ£¬x=10mµÄÖʵ㴦ÓÚÆ½ºâλÖô¦ | |
| E£® | ÖʵãA¡¢E¡¢IÔÚÕñ¶¯¹ý³ÌÖÐÎ»ÒÆ×ÜÊÇÏàͬ |
| A£® | $\sqrt{2gh}$ | B£® | $\frac{v+{v}_{0}}{2g}$ | C£® | $\frac{\sqrt{{v}^{2}-{v}_{0}^{2}}}{g}$ | D£® | $\sqrt{\frac{2h}{g}}$ |
| A£® | XÊÇÕýµç×Ó£¬YÊÇÖÊ×Ó | B£® | XÊÇÖÐ×Ó£¬YÊÇÕýµç×Ó | ||
| C£® | XÊÇÖÐ×Ó£¬YÊÇÖÊ×Ó | D£® | XÊÇÖÊ×Ó£¬YÊÇÖÐ×Ó |