ÌâÄ¿ÄÚÈÝ
13£®| A£® | ÕâÁ½¿ÅÎÀÐǵļÓËÙ¶È´óСÏàµÈ£¬¾ùΪ$\frac{Rg}{r}$ | |
| B£® | ÕâÁ½¿ÅÎÀÐǵÄÏßËÙ¶È´óСÏàµÈ£¬¾ùΪ$\sqrt{gr}$ | |
| C£® | ÎÀÐÇ1ÏòºóÅçÆø¾ÍÒ»¶¨ÄÜ×·ÉÏÎÀÐÇ2 | |
| D£® | ÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèµÄʱ¼äΪ$\frac{¦Ðr}{3Rg}$$\sqrt{gr}$ |
·ÖÎö ¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦ºÍÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦Çó³öÎÀÐǵļÓËٶȺÍÖÜÆÚ£¬´Ó¶ø½øÐÐÅжϣ®ÔÚÔ˶¯µÄ¹ý³ÌÖУ¬ÍòÓÐÒýÁ¦ÓëËÙ¶È·½Ïò´¹Ö±£¬ÍòÓÐÒýÁ¦²»×ö¹¦£®
½â´ð ½â£ºA¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦µÃ£¬$\frac{GmM}{{r}^{2}}$=ma£¬
½âµÃa=$\frac{GM}{{r}^{2}}$£®¸ù¾ÝÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦µÃ£¬GM=gR2£¬
ÔòÎÀÐǵļÓËÙ¶Èa=$\frac{{gR}^{2}}{{r}^{2}}$£®ÖªÎÀÐǵļÓËÙ¶È´óСÏàµÈ£®¹ÊA´íÎó£®
B¡¢ÕâÁ½¿ÅÎÀÐǵÄÏßËÙ¶È´óСÏàµÈ£¬¾ùΪv=$\sqrt{\frac{GM}{r}}$=$\sqrt{\frac{{gR}^{2}}{r}}$£¬¹ÊB´íÎó£»
C¡¢ÈôÎÀÐÇ1ÏòºóÅçÆø£¬ÔòÆäËÙ¶È»áÔö´ó£¬ÎÀÐÇ1½«×öÀëÐÄÔ˶¯£¬ËùÒÔÎÀÐÇ1²»¿ÉÄÜ×·ÉÏÎÀÐÇ2£®¹ÊC´íÎó£®
D¡¢ÓÉ$\frac{GmM}{{r}^{2}}$=m$\frac{{4¦Ð}^{2}}{{T}^{2}}$rºÍ$\frac{G{Mm}_{0}}{{R}^{2}}$=m0g£¬
ÁªÁ¢½âµÃ£¬T=2¦Ð$\sqrt{\frac{{r}^{3}}{GM}}$=2¦Ð$\sqrt{\frac{{r}^{3}}{{gR}^{2}}}$£¬
¹ÊÎÀÐÇ1ÓÉλÖÃAÔ˶¯µ½Î»ÖÃBËùÐèµÄʱ¼äΪ£ºt=$\frac{T}{6}$=$\frac{¦Ðr}{3Rg}$$\sqrt{gr}$£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦ºÍÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦ÕâÁ½¸öÀíÂÛ£¬²¢ÄÜÁé»îÔËÓã®
| A£® | £¨A£©Îª×ϹâµÄ¸ÉÉæÍ¼Ñù | B£® | £¨B£©Îª×ϹâµÄ¸ÉÉæÍ¼Ñù | ||
| C£® | £¨C£©Îªºì¹âµÄ¸ÉÉæÍ¼Ñù | D£® | £¨D£©Îªºì¹âµÄ¸ÉÉæÍ¼Ñù |
| A£® | Á½¸ö·Ö×Ó×é³ÉµÄϵͳµÄÊÆÄÜËæ·Ö×Ó¼äµÄ¾àÀëÔö´ó¶ø¼õС | |
| B£® | ÒºÌå±íÃæ²ã·Ö×Ó¼ä¾àÀë´óÓÚÒºÌåÄÚ²¿·Ö×Ó¼ä¾àÀ룬¹ÊÒºÌå±íÃæ´æÔÚÕÅÁ¦ | |
| C£® | °ÑºÜ¶àСµÄµ¥¾§Ìå·ÅÔÚÒ»Æð£¬¾Í±ä³ÉÁ˷Ǿ§Ìå | |
| D£® | µÚ¶þÀàÓÀ¶¯»úûÓÐÎ¥·´ÄÜÁ¿Êغ㶨ÂÉ |
| A£® | µçѹ±íµÄʾÊýÊÇ220V | B£® | µçÁ÷±íµÄʾÊýÊÇ1.4A | ||
| C£® | ±äѹÆ÷ÔÏßȦµÄÊäÈ˹¦ÂÊÊÇ22W | D£® | ͨ¹ýRµÄ½»±äµçÁ÷µÄƵÂÊÊÇ50Hz |